

Anexo I. Perfiles de evidencia (GRADE) Tablas 15-20

Tabla 15: **Métodos activos de calentamiento cutáneo frente a control**

MD = mean difference, RR = relative risk

- a. Low number of events
- b. Low number of events; 95% of CI includes appreciable benefit or harm
- c. Single study
- d. High variability of effects among studies ($I^2=76\%$)

Quality assessment							Nº of patients		Effect		Quality	Importance
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Active warming	control (no active warming)	Relative (95% CI)	Absolute (95% CI)		
1	randomised trials ⁴	not serious	not serious ^a	not serious	very serious ^b	none	2/142 (1.4%)	10/158 (6.3%)	RR 0.22 (0.05 to 1.00)	49 fewer per 1000 (from 0 fewer to 60 fewer)	⊕⊕○○ LOW ³	IMPORTANT
Non fatal myocardial infarction												
1	randomised trials ⁴	not serious	not serious ^a	not serious	very serious ^b	none	0/142 (0.0%)	1/158 (0.6%)	RR 0.37 (0.02 to 9.03)	4 fewer per 1000 (from 6 fewer to 51 more)	⊕⊕○○ LOW	IMPORTANT
Non fatal cardiac arrest												
1	randomised trials ⁴	not serious	not serious ^c	not serious	very serious ^b	none	0/142 (0.0%)	2/158 (1.3%)	RR 0.22 (0.01 to 4.59)	10 fewer per 1000 (from 13 fewer to 45 more)	⊕⊕○○ LOW	IMPORTANT
Patients transfused												
8	randomised trials ^{1,3,5,6,7,8,9,10}	not serious	not serious	not serious	serious ^b	none	64/298 (21.5%)	102/310 (32.9%)	RR 0.72 (0.46 to 1.14)	92 fewer per 1000 (from 46 more to 178 fewer)	⊕⊕⊕○ MODERATE	CRITICAL
Fluids transfused during surgery - mL												
17	randomised trials ^{1,4,5,7,8,9,11,12,13,14,15,16,17,18,19,20,21}	not serious	serious ^d	not serious	not serious	none	541	538	-	MD 178,22 fewer (from 277 fewer to 79 fewer)	⊕⊕⊕○ MODERATE	IMPORTANT

References

1. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. *New England Journal of Medicine* 1996;334(19):1209-15.
2. Melleng AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. *Lancet* 2001;358(9285):876-80.
3. Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ. Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. *The British Journal of Surgery* 2007;94(4):421-6.
4. Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. *JAMA* 1997;277(14):1127-34.
5. Bock M, Müller J, Bach A, Böhrer H, Martin E, Motsch J. Effects of preinduction and intraoperative warming during major laparotomy. *British Journal of Anaesthesia* 1998;80(2):159-63.
6. Campos-Suárez JM, Casas-Vila JI, Litvan-Suquieni H, Villar-Landeira JM. Air-convection heater for abdominal surgery. Study of the relation between surgical time and the efficacy of body temperature maintenance. *Revista Española de Anestesiología y Reanimación* 1997;44(2):47-51.
7. Johansson T, Lisander B, Ivarsson I. Mild hypothermia does not increase blood loss during total hip arthroplasty. *Acta Anaesthesiologica Scandinavica* 1999;43(10):1005-10.
8. Kabbara A, Goldlust SA, Smith CE, Hagen JF, Pinchak AC. Randomized prospective comparison of forced air warming using hospital blankets versus commercial blankets in surgical patients. *Anesthesiology* 2002;97(2):338-44.
9. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. *Lancet* 1996;347(8997):289-92.
10. Bennett J, Ramachandra V, Webster J, Carli F. Prevention of hypothermia during hip surgery: effect of passive compared with active skin surface warming. *British Journal of Anaesthesia* 1994;73(2):180-3.
11. Butwick AJ, Lipman SS, Carvalho B. Intraoperative forced air-warming during cesarean delivery under spinal anesthesia does not prevent maternal hypothermia. *Anesthesia and Analgesia* 2007;105(5):1413-9.
12. Casati A, Fanelli G, Ricci A, Musto P, Cedrati V, Altomari G, et al. Shortening the discharging time after total hip replacement under combined spinal/epidural anesthesia by actively warming the patient during surgery. *Minerva Anestesiologica* 1999;65(7-8):507-14.
13. Chung SH, Lee BS, Yang HJ, Kweon KS, Kim HH, Song J, et al. Effect of preoperative warming during cesarean section under spinal anesthesia. *Korean Journal of Anesthesiology* 2012;62(5):454-60.
14. D'Angelo Vanni SM, Castiglia YM, Ganem EM, Rodrigues Júnior GR, Amorim RB, Ferrari F, et al. Preoperative warming combined with intraoperative skin-surface warming does not avoid hypothermia caused by spinal anesthesia in patients with midazolam premedication. *São Paulo Medical Journal* 2007;125(3):144-9.
15. Mason DS, Sapala JA, Wood MH, Sapala MA. Influence of a forced air warming system on morbidly obese patients undergoing Roux-en-Y gastric bypass. *Obesity Surgery* 1998;8(4):453-60.
16. Rasmussen YH, Leikersfeldt G, Drenck NE. Forced-air surface warming versus oesophageal heat exchanger in the prevention of perioperative hypothermia. *Acta Anaesthesiologica Scandinavica* 1998;42(3):348-52.

17. Rathinam S, Annam V, Steyn R, Raghuraman G. A randomised controlled trial comparing Mediwrap heat retention and forced air warming for maintaining normothermia in thoracic surgery. *Interactive Cardiovascular and Thoracic Surgery* 2009;9(1):15-9.
18. Steinbrook RA, Seigne PW. Total-body oxygen consumption after isoflurane anesthesia: effects of mild hypothermia and combined epidural-general anesthesia. *Journal of Clinical Anesthesia* 1997;9(7):559-63.
19. Zhao J, Luo AL, Xu L, Huang YG. Forced-air warming and fluid warming minimize core hypothermia during abdominal surgery. *Chinese Medical Sciences Journal* 2005;20(4):261-4.
20. Just B, Trévien V, Delva E, Lienhart A. Prevention of intraoperative hypothermia by preoperative skin-surface warming. *Anesthesiology* 1993;79(2):214-8.
21. Camus Y, Delva E, Sessler DI, Lienhart A. Pre-induction skin-surface warming minimizes intraoperative core hypothermia. *Journal of Clinical Anesthesia* 1995;7(5):384-8

Tabla 16: Aire caliente conectivo frente a sistemas de calentamiento eléctrico

MD – mean difference, RR – relative risk

- a. 95% of CI includes appreciable benefit or harm
- b. 95%CI includes large benefit or harm

Quality assessment							No of patients		Effect		Quality	Importance
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Forced-air warming	electric heating systems	Relative (95% CI)	Absolute (95% CI)		
1	randomised trials ³	not serious	not serious	not serious	very serious ^b	none	1/29 (3.4%)	1/30 (3.3%)	RR 1.03 (0.07 to 15.77)	1 more per 1000 (from 31 fewer to 429 more)	⊕⊕○○ LOW	CRITICAL
Transfusions - patients												
1	randomised trials ³	not serious	not serious	not serious	very serious ^b	none	14/29 (48.3%)	12/30 (40.0%)	RR 1.21 (0.68 to 2.15)	84 more per 1000 (from 128 fewer to 460 more)	⊕⊕○○ LOW	CRITICAL

References

1. Leung KK, Lai A, Wu A. A randomised controlled trial of the electric heating pad vs forced-air warming for preventing hypothermia during laparotomy. *Anaesthesia* 2007;62(6):605-8.
2. Ng V, Lai A, Ho V. Comparison of forced-air warming and electric heating pad for maintenance of body temperature during total knee replacement. *Anaesthesia* 2006;61(11):1100-4.
3. Hofer CK, Worn M, Tavakoli R, Sander L, Maloigne M, Klaghofer R, et al. Influence of body core temperature on blood loss and transfusion requirements during off-pump coronary artery bypass grafting: a comparison of 3 warming systems. *The Journal of Thoracic and Cardiovascular Surgery* 2005;129(4):838-43.

Tabla 17: Aire caliente conectivo frente a sistemas de circulación de agua caliente

MD – mean difference, RR – relative risk

- a. Low number of events; 95% of CI includes appreciable benefit or harm
- b. Low number of events
- c. High variability of effects among studies
- d. 95%CI includes large benefit or harm

Quality assessment							Nº of patients		Effect		Quality	Importance
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Forced-air warming	warm water circulation systems	Relative (95% CI)	Absolute (95% CI)		
Infection of surgical wound												
3	randomised trials ^{1,2,3}	not serious	not serious	not serious	very serious ^a	none	5/104 (4.8%)	1/104 (1.0%)	RR 3.00 (0.62 to 14.53)	19 more per 1000 (from 4 fewer to 130 more)	⊕⊕○○ LOW	CRITICAL
Transfusions - patients												
2	randomised trials ^{1,3}	not serious	not serious	not serious	serious ^b	none	27/54 (50.0%)	18/54 (33.3%)	RR 1.59 (0.48 to 5.24)	197 more per 1000 (from 173 fewer to 1000 more)	⊕⊕⊕○ MODERATE	CRITICAL
Fluids transfused during surgery - mL												
3	randomised trials ^{2,4,5}	not serious	serious ^c	not serious	serious ^d	none	94	90	-	MD 315,65 fewer (from 899 fewer to 268 more)	⊕⊕○○ LOW	IMPORTANT

References

1. Calcaterra D, Ricci M, Lombardi P, Katariya K, Panos A, Salerno TA. Reduction of postoperative hypothermia with a new warming device: a prospective randomized study in off-pump coronary artery surgery. *The Journal of Cardiovascular Surgery* 2009;50(6):813-7.
2. Elmore JR, Franklin DP, Youkey JR, Oren JW, Frey CM. Normothermia is protective during infrarenal aortic surgery. *Journal of Vascular Surgery* 1998;28(6):984-92.
3. Hofer CK, Worn M, Tavakoli R, Sander L, Maloigne M, Klaghofer R, et al. Influence of body core temperature on blood loss and transfusion requirements during off-pump coronary artery bypass grafting: a comparison of 3 warming systems. *The Journal of Thoracic and Cardiovascular Surgery* 2005;129(4):838-43.

4. Janicki PK, Higgins MS, Janssen J, Johnson RF, Beattie C. Comparison of two different temperature maintenance strategies during open abdominal surgery: upper body forced-air warming versus whole body water garment. *Anesthesiology* 2001;95(4):868-74.
5. Zangrillo A, Pappalardo F, Talò G, Corno C, Landoni G, Scandroglio A, et al. Temperature management during off-pump coronary artery bypass graft surgery: a randomized clinical trial on the efficacy of a circulating water system versus a forced-air system. *Journal of Cardiothoracic and Vascular Anesthesia* 2006;20(6):788-92.

Tabla 18: Aire conectivo frente a calor radiante

MD – mean difference, RR – relative risk

a. 95%CI includes large benefit or harm

Nº of studies	Study design	Risk of bias	Quality assessment			Other considerations	Nº of patients		Effect		Quality	Importance
			Inconsistency	Indirectness	Imprecision		Forced-air warming	electric heating systems	Relative (95% CI)	Absolute (95% CI)		
Infection of surgical wound												
1	randomised trials ¹	not serious	not serious	not serious	very serious ^a	none	8/139 (5.8%)	5/140 (3.6%)	RR 1.61 (0.54 to 4.80)	22 more per 1000 (from 16 fewer to 136 more)	⊕⊕○○ LOW	CRITICAL

References

1. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. *Lancet* 2001;358(9285):876-80

Tabla 19: Sistemas de calentamiento eléctrico frente a sistemas de circulación de agua caliente

MD – mean difference, RR – relative risk

- a. Single study
- b. Low number of events; 95% of CI includes appreciable benefit or harm

Nº of studies	Study design	Risk of bias	Quality assessment				Nº of patients		Effect		Quality	Importance
			Inconsistency	Indirectness	Imprecision	Other considerations	Resistive heating systems	warm water circulation systems	Relative (95% CI)	Absolute (95% CI)		
Infections of the surgical wound												
1	randomised trials ¹ <small>iError! No se encuentra el origen de la referencia.</small>	not serious	not serious ^a	not serious	very serious ^b	none	1/30 (3.3%)	0/29 (0.0%)	OR 3.00 (0.12 to 76.68)	0 fewer per 1000 (from 0 fewer to 0 fewer)	⊕⊕○○ LOW	CRITICAL
Patients transfused												
1	randomised trials ¹	not serious	not serious ^a	not serious	very serious ^b	none	12/30 (40.0%)	5/29 (17.2%)	OR 3.20 (0.96 to 10.72)	228 more per 1000 (from 6 fewer to 518 more)	⊕⊕○○ LOW	CRITICAL

References

1. Hofer CK, Worn M, Tavakoli R, Sander L, Maloigne M, Klaghofer R, et al. Influence of body core temperature on blood loss and transfusion requirements during off-pump coronary artery bypass grafting: a comparison of 3 warming systems. The Journal of Thoracic and Cardiovascular Surgery 2005;129(4):838-43.

Tabla 20: Estrategias de precalentamiento previas a la inducción anestésica

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

- a. Low number of events
- b. Single study
- c. High variability of effects among studies
- d. 95%CI of effect estimate includes benefit or harm
- e. Very low number of events; 95%CI includes appreciable benefit or harm

Quality assessment							№ of patients		Effect		Quality	Importance
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Active	no active	Relative (95% CI)	Absolute (95% CI)		
Infection and complications of the surgical wound												
2	randomised trials ^{1,2}	not serious	not serious	not serious	serious ^a	none	14/187 (7.5%)	34/195 (17.4%)	RR 0.44 (0.25 to 0.80)	98 fewer per 1000 (from 35 fewer to 131 fewer)	⊕⊕⊕○ MODERATE	CRITICAL
Patients transfused												
2	randomised trials ^{2,3}	not serious	not serious	serious ^c	serious ^a	none	14/67 (20.9%)	34/76 (44.7%)	RR 0.40 (0.12 to 1.35)	268 fewer per 1000 (from 157 more to 394 fewer)	⊕⊕○○ LOW	CRITICAL
Fluids transfused during surgery - mL - Preoperative												
5	randomised trials ^{3,4,5,6,7}	not serious	serious ^c	not serious	serious ^d	none	71	61	-	141.58 fewer (341.16 fewer to 58.01 more)	⊕⊕○○ LOW	IMPORTANT

Quality assessment							No of patients		Effect		Quality	Importance
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Active	no active	Relative (95% CI)	Absolute (95% CI)		
All cause mortality												
1	randomised trials ²	not serious	not serious ^b	not serious	very serious ^e	none	1/47 (2.1%)	2/56 (3.6%)	RR 0.60 (0.06 to 6.37)	14 fewer per 1000 (from 34 fewer to 192 more)	⊕⊕○○ LOW	IMPORTANT

References

1. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. *Lancet* 2001;358(9285):876-80.
2. Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ. Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. *The British Journal of Surgery* 2007;94(4):421-6.
3. Bock M, Müller J, Bach A, Böhrer H, Martin E, Motsch J. Effects of preinduction and intraoperative warming during major laparotomy. *British Journal of Anaesthesia* 1998;80(2):159-63.
4. Chung SH, Lee BS, Yang HJ, Kweon KS, Kim HH, Song J, et al. Effect of preoperative warming during cesarean section under spinal anesthesia. *Korean Journal of Anesthesiology* 2012;62(5):454-60.
5. D'Angelo Vanni SM, Castiglia YM, Ganem EM, Rodrigues Júnior GR, Amorim RB, Ferrari F, et al. Preoperative warming combined with intraoperative skin-surface warming does not avoid hypothermia caused by spinal anesthesia in patients with midazolam premedication. *São Paulo Medical Journal* 2007;125(3):144-9.
6. Just B, Trévien V, Delva E, Lienhart A. Prevention of intraoperative hypothermia by preoperative skin-surface warming. *Anesthesiology* 1993;79(2):214-8.
7. Camus Y, Delva E, Sessler DI, Lienhart A. Pre-induction skin-surface warming minimizes intraoperative core hypothermia. *Journal of Clinical Anesthesia* 1995;7(5):384-8