

1

Additional experimental data

2

3

Figure 1S - (a) Photograph of the area where the strain of *Penicillium roqueforti* was collected (b) Rocky outcrop on the beach of La Laja, Gran Canaria, Spain.

4

5

6

CABI BIOSCIENCE IDENTIFICATION SERVICES		
Report:	H275/01/YS4	
Your ref:	Jaspars/Roberto/TMA	
Your number	IMI number	Identification and comments
PM 001	386936	<p><i>Paecilomyces variotii</i> Bainier. Description found in Domsch <i>et al.</i> <i>A Compendium of Soil Fungi</i>, Academic Press, 534-536 pp. A common contaminant in air and often isolated from substrates originating from higher temperatures e.g. compost. The species has also been isolated from sea water and wood exposed to sea water. This material has been discarded. Report from Dr Z. Lawrence.</p>
PA 002	386937	<p><i>Penicillium roqueforti</i> Thom. A widely distributed agent of food deterioration. Description found in Pitt, J.I. (1980), <i>The genus Penicillium and its teleomorphs sister Fumicillium and Talaromyces</i>, Academic Press, 345-356 pp. This species is capable of growing at low oxygen levels. It is found on cellophane wrapped foods, canned carbonated drinks, silage, as well as from cheese. Also isolated from soil. This material has been discarded. Report from Dr Z. Lawrence.</p>

7

8

Figure 2S – CABI Bioscience (Surrey, UK) identification report of the fungal strain.

9

10 **Figure 3S** - View from above of the mass cultivation of *Penicillium roqueforti*.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 **Figure 4S** – Solvent-solvent processing scheme applied to partition the culture broth of *Penicillium*

40 *roqueforti*, adapted from Kupchan et al. (1973).

41

42 **Description of the chemical analysis of the culture broth from the derived-marine *Penicillium***
43 ***roqueforti* fungus.**

44

45 Twelve liters of culture broth were extracted in a separatory funnel with 2.5 L of CH_2Cl_2 (x3) to
46 obtain 175 mg of crude extract (**Pr-L-0**), which was subjected to the partitioning scheme described above
47 (Figure 4S).

48 The ^1H -NMR spectrum resulted in seven protons of carboxylic acids at δ 12.5-11.2, aromatics at
49 δ 8.5-7.0; olefines at δ 5.9-5.0; geminals to heteroatoms at δ 4.3-3.5 and aliphatics at δ 3.0-0.6.

50 This crude extract was dissolved in 20 ml of water and 180 ml of MeOH and was extracted in a
51 decantation funnel with hexane until it was colorless (10 extractions). The evaporation of the solvent gave
52 106 mg of the liposoluble fraction (**Pr-L-1**).

53 The hydrosoluble fraction was diluted with additional water (160 ml) to obtain an aqueous phase
54 of composition 50% H_2O - 50% MeOH, which was reextracted with CH_2Cl_2 (x3) to give the fractions **Pr-**
55 **L-2** (soluble in CH_2Cl_2 , 52 mg) and **Pr-L-3** (17 mg).

56

57

58 **Study of the liposoluble fraction-1 (Pr-L-1)**

59

60 By TLC (normal-phase, Hexane: EtOAc, 80: 20) six major substances were detected.

61 The same was observed by HPLC (normal-phase, Hexane: EtOAc, 80: 20) (Figure 5S):

Figure 5S - Analytical chromatography by TLC and HPLC of the **Pr-L-1** fraction.

75

In the ^1H -NMR spectrum of this mixture, we detected: aromatic protons (δ 7.70 and 7.53),

76 olefinic (δ 5.38), germinal to heteroatom (δ 4.31) and aliphatic hydrocarbon chains (δ 2.9-0.7).

77 In the ^{13}C -NMR spectrum, the following were to be observed: carbonilic carbons (δ 178.187),
78 aromatics (δ 167.753), olefinics (δ 130.939 and 128.859), geminals to heteroatoms (δ 77.543-65.914) and
79 from aliphatic chains (δ 37.469-14.132).

80 This mixture was submitted to a normal-phase semipreparative HPLC (Hexane: EtOAc, 80: 20,
81 UV detector adjusted to 254 nm) giving two fractions: **Pr-L-1-1** and **Pr-L-1-2**.

82

83 **Pr-L-1-1 fraction**

84

85 A colourless oil was obtained (50 mg), and the signals were only observed at δ 0.85-1.86 using
86 ^1H -NMR spectroscopy, leading to the suspicion that it is a mixture of alkanes. A study by GC-MS allowed
87 for the identification and quantification of the following volatile compounds:

88

89 Pentadecane, C_{15} (**1**; $n= 12$; $R_t= 13.990$; 0.037 mg)

90 Heptadecane, C_{17} (**1**; $n= 14$; $R_t= 15.642$; 0.030 mg)

91 Eicosane, C_{20} (**1**; $n= 17$; $R_t= 17.393$; 0.063 mg)

92 *Cyclo-ProLeu* (**14**; $T_r= 17.56$; 0.211 mg)

93 Heneicosane, C_{21} (**1**; $n= 18$; $R_t= 18.327$; 0.141 mg)

94 Docosane, C_{22} (**1**; $n= 19$; $R_t= 18.978$; 0.142 mg)

95 Tricosane, C_{23} (**1**; $n= 20$; $R_t= 19.744$; 0.250 mg)

96 Hexacosane, C_{26} (**1**; $n= 23$; $R_t= 23.242$; 1.766 mg)

97 Heptacosane, C_{27} (**1**; $n= 24$; $R_t= 25.07$; 0.588 mg)

98

99 This gave a total of 46.772 mg of non-volatile material, that was assigned to the alkanes of
100 higher molecular weight, that did not volatilize at the injector temperature used or were outside the
101 predetermined scanning time in the method.

102

103 **Pr-L-1-2 fraction**

104

105 This colourless oil (50 mg), when observed by ^1H -NMR, revealed the following: aromatic

106 protons (δ 7.70 and 7.53), olefins (δ 5.48-5.26), geminal to heteroatoms (δ 4.42), in alpha to carbonyls (δ 2.80), of methylenes/ aliphatic methines (δ 1.83-1.20), and methyls (δ 0.96-0.81). Thus, it appears to be a
107 mixture of alkyl phthalates and unsaturated fatty acids. Indeed, a study by GC-MS showed the presence
108 of the following volatile compounds:
109

110

111 Dibutyl Phthalate (**15**; $n= 3$; $R_t= 17.649$; 5.126 mg)
112 7,10-Octadecadienoic acid, methyl ester (**7**; $n= 6$, $m= 5$; $R_t= 18.378$; 0.178 mg)
113 Hexadecanoic acid, octadecyl ester (**9**; $R_t= 18.646$; 0.251 mg)
114 Hexadecanoic acid, 2-(octadecyloxi)-ethyl ester (**12**; $R_t= 19.106$; 0.119 mg)
115 9-Octadecenoic acid, (E)- (**5**; $R_t= 19.807$; 0.039 mg)
116 Bis(4-methylpentyl) phthalate (**16**; $n= 3$; $R_t= 20.407$; 0.968 mg)
117 2-(Octadecyloxi) ethanol (**11**; $R_t= 21.805$; 0.555 mg)
118 Bis(2-ethylhexyl) phthalate (**17**; $R_t= 22.645$; 0.214 mg)
119 Dihexyl phthalate (**15**; $n= 5$; $R_t= 22.735$; 2.919 mg)
120 Dioctyl phthalate (**15**; $n= 7$; $R_t= 26.367$; 2.349 mg)
121

122

122 There was a total weight of 37.282 mg of non-volatile material that was assigned, using ^1H -
123 RMN spectroscopy, to a mixture of alkyl phthalates of high molecular weight, and to free unsaturated fat
124 acids that did not volatilize at the injector temperature used or were outside the predetermined scanning
125 time in the method.

126

126 Indeed, rechromatography of this fraction through silica eluting with hexane-ethyl acetate
127 yielded a pure sample (homogeneous by TLC) of one of these phthalates. From its ^1H -RMN spectrum, it
128 was assigned the structure of the Dinonyl phthalate (**15**; $n= 8$): δ 7.70 (2H, dd); 7.53 (2H, dd); 4.32 (4H,
129 t); 1.75 (4H, m); 1.48-1.20 (24H, m) and 0.89 (6H, t).

130

131 **Study of the liposoluble fraction-2 (Pr-L-2)**
132

133 52 mg of a mixture was obtained that, by analytical TLC, gave eight substances, with the R_t
134 coinciding with five components of the previous fraction **Pr-L-1**.

135 The ^1H -RMN spectrum showed aromatic protons (δ 7.78-7.47), geminal to heteroatom (δ 4.28 on

136 one side and 3.90-3.15 on the other) and typical saturated hydrocarbonated chains (δ 2.50-0.75), leading
137 to the suspicion, therefore, of the presence of phthalates and saturated lipid components. A GC-MS
138 analysis of this fraction identified/ quantified as follows:

139

140 Hexadecanoic acid (2-pentadecyl-1,3-dioxolan-4-yl) methyl ester (**8**; R_t = 12.154; 0.0088 mg)

141 2-Butyl-1-octanol (**3**; n= 3, m= 3; R_t = 12.519; 0.0025 mg)

142 Tetradecanoic acid (**4**, n= 12; R_t = 14.776; 0.0063 mg)

143 1-Tridecanol (**2**; n= 11; R_t = 14.867; 0.0023 mg)

144 Dietyl phthalate (**15**; n= 1; R_t = 15.062; 0.0083 mg)

145 1-Hexadecanol (**2**; n= 14; R_t = 16.348; 0.003 mg)

146 Bis(2-methylpropyl) phthalate (**16**; n= 1; R_t = 17.009; 0.0167 mg)

147 Dibutyl phthalate (**15**; n= 3; R_t = 17.653; 1.3935 mg)

148 Stearic acid, 3-(octadecyloxy)-propyl ester (**10**; R_t = 17.948; 0.0024 mg)

149 9-Octadecenamide (**6**; R_t = 18.358; 0.0181 mg)

150 9-Octadecenoic acid, (E)- (**5**; R_t = 19.814; 0.0087 mg)

151

152 The total weight of 50.529 mg of non-volatile material was assigned by 1 H-NMR spectroscopy
153 to a mixture of phthalates and saturated lipid components of the above type but of larger molecular size
154 that, as occurred previously, either did not volatilize at the injector temperature used or went outside the
155 default analysis time for the method. Thus, by rechromatography column, some different enriched
156 fractions were separated:

157

158 a) alkanes (**1**; δ 1.62-0.77), b) Dinonyl phthalate {(**15**; n= 8): δ 7.70 (2 H, dd); 7.53 (2 H, dd);
159 4.32 (4 H, t); 1.75 (4 H, m); 1.48-1.20 (24 H, m) and 0.89 (6 H, t)}, c) Dibutyl phthalate {(**15**; n= 3): δ
160 7.70 (2 H, dd); 7.53 (2 H, dd); 4.31 (4 H, t); 1.72 (4 H, m); 1.44 (4 H, m); 0.96 (6 H, t)}, d) saturated free
161 fatty acids (**4**; δ 1.85-0.80) e) saturated 1-alkanols (**2**; δ 3.80-3.50; 1.85-0.80).

162

163 **Study of the liposoluble fraction-3 (Pr-L-3)**

164 The crude fraction (17 mg) has an 1 H-NMR spectrum which shifts germinal protons to
165 heteroatoms (δ 4.10-3.15), -NH₂ groups (δ 3.03) and aliphatic chains (δ 2.50-0.75).

166 The GC-MS analysis of this fraction allowed the identification/quantification of the following
167 volatile organic compounds:

168

169 2,6-Octadienal, 3,7-dimethyl-, (E)- (**13**; R_t = 12.179; 0.079 mg)

170 Pentadecane, C₁₅ (**1**; n= 12; R_t = 13.992; 0.005 mg)

171 9-Octadecenamide (**6**; R_t = 18.366; 0.0489 mg)

172 9-Octadecenoic acid, (E)- (**5**; R_t = 19.809; 0.03 mg)

173 2-Ethylhexyl adipate (**18**; R_t = 20.714; 0.143 mg)

174

175 That gives a total of 16.694 mg that was assigned by ¹H-NMR to a mixture of unsaturated
176 glycerides (δ 5.46-5.14; 4.37-4.06; 2.53-2.23; 1.84-0.80) and polyhydroxy compounds (δ 4.10-3.15) that,
177 as before, either did not volatilize at the injector temperature used or went outside the default analysis
178 time for the method.

179

180 **Final note:** The GC-MS digital fingerprints of the compounds **13**, **15** (n= 1, 3 and 7); and the ¹H-NMR
181 spectra of the compound **15** (n= 3) can be seen below. The GC-MS spectra of the other compounds, and
182 other spectroscopic data, can be obtained by contacting the authors.

183

184

185

Figure 6S – Typical Gas chromatography–mass spectrometry (GC-MS) chromatogram.

186

Chromatogram Plot

187

188

Figure 7S – Typical GC-MS enlarged chromatogram.

189

Figure 8S – The GC-MS fingerprint of the 2,6-Octadienal, 3,7-dimethyl-, (E)- (13).

192

193

Spectrum from c:\saturnnw\data\farmes\muestras\prml1a.sms

Scan No: 959, Time: 15:064 minutes
No averaging, Background corrected (E)
Comment: 15.064 min. Scan: 959 Chan: 1 Ion: 684 us RIC: 130208 EBC
Pair Count: 157 MW: 0 Formula: None CAS No: None Acquired Range: 20 - 400

1 Diethyl Phthalate Sim.: 526, RevSim.: 878, Prob.: 58.74 Formula: C12H14O4

MW: 222 CAS No: 84-66-2
Entry #: 15629 of REPLIB
NIST No: 114975 Other Databases: Fine TSCA RTECS EPA USP HODOC NIH EINECS

2 Diethyl Phthalate Sim.: 505, RevSim.: 757, Prob.: 58.74 Formula: C12H14O4

MW: 222 CAS No: 84-66-2
Entry #: 15631 of REPLIB
NIST No: 155450 Other Databases: Fine TSCA RTECS EPA USP

3 Diethyl Phthalate Sim.: 498, RevSim.: 752, Prob.: 58.74 Formula: C12H14O4

MW: 222 CAS No: 84-66-2
Entry #: 67077 of MAINLIB
NIST No: 227685 Other Databases: Fine TSCA RTECS EPA USP HODOC NIH EINECS

194

195

Figure 9S - GC-MS fingerprint of the Diethyl pthalate (**15**; n= 1).

NIST Target Spectrum Search Hit List

NIST Target Spectrum Search Results

100 Hits Found:

NIST Target Spectrum Search Parameters

Normal (Forward)

1

Min Ion:

Min Intensity:

Constraints

MW Range:

Name Fragment:

Elements in Compound:

Element Counts:

Peaks:

Other Databases:

Requested Pre-Search:

Requested Final Search:

Search 2 Libraries:

Huella MS del ftalato de dibutilo

1 Dibutyl phthalate

Sim.: 84.9, RevSim.: 929, Prob.: 43.76 Formula: C16H22O4

MW: 278 CAS No: 84-74-2

Entry #: 15548 of REPLIB

NIST No: 114974 Other Databases: Fine TSCA RTECS EPA HODOC NIH EINECS IR

2 Dibutyl phthalate

Sim.: 82.0, RevSim.: 909, Prob.: 43.76 Formula: C16H22O4

MW: 278 CAS No: 84-74-2

Entry #: 15599 of REPLIB

NIST No: 23125 Other Databases: Fine TSCA RTECS EPA HODOC NIH EINECS IR

3 Dibutyl phthalate

Sim.: 82.0, RevSim.: 886, Prob.: 43.76 Formula: C16H22O4

MW: 278 CAS No: 84-74-2

Entry #: 15599 of REPLIB

NIST No: 70664 Other Databases: Fine TSCA RTECS EPA HODOC NIH EINECS IR

196

197

198

199

Figure 10S – The GC-MS fingerprint of the Dibutyl phthalate (15; n = 3)

200

201

202

Figure 11S – The GC-MS fingerprint of the Dioctyl phthalate (**15**, n= 7).

203

No. Points 16384
16
No. Scans 0
16
Dummy Scans 0
Scan Count 2500.0
SW +/- Filter 2400.
Acq. Time 3.277s
Dwell 200u
Obs Freq 250.1340000
Obs base 250.1300000
4.0000 KHz
Q1 offset 250.1340000
dcptfrc 4.0000 KHz
Q2 offset 640
RCVRF gain OFF
DEC Mode 58
DEC Attn.

H1 script run at: Monday, October 29, 2001 4:54:44 pm
Macintosh HD:MacNMR 5.3-AC250:data:marcel:ROBERTO:Prb2003FD-1H-CDCl3

File created: Monday, October 29, 2001 4:54 pm

Figure 12S - The ^1H -NMR spectrum of the Dibutyl phthalate (**15**; $n=3$).

204

205

206

207