

SUPPLEMENTARY DATA

Table 1 of the supplementary data

213 genes related to inherited cardiovascular diseases and sudden death included in our custom probe library

<i>AARS2</i>	Alanine-tRNA ligase, mitochondrial
<i>ABCC9</i>	ATP-binding cassette, subfamily C (CFTR/MRP), member 9
<i>ACAD9</i>	Acyl-CoA dehydrogenase family member 9, mitochondrial
<i>ACADM</i>	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial
<i>ACADVL</i>	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial
<i>ACTA1</i>	Actin, alfa 1, skeletal muscle
<i>ACTA2</i>	Actin, aortic smooth muscle
<i>ACTC1</i>	Actin, alpha cardiac muscle 1 **
<i>ACTN2</i>	Alpha-actinin-2
<i>ACVRL1</i>	Serine/threonine-protein kinase receptor R3
<i>ADAMTSL4</i>	ADAMTS-like protein 4
<i>AGK</i>	Acylglycerol kinase, mitochondrial
<i>AGL</i>	Glycogen debranching enzyme
<i>AGPAT2</i>	1-acyl-sn-glycerol-3-phosphate acyltransferase beta
<i>AKAP9</i>	A-kinase anchor protein 9
<i>ALMS1</i>	Alstrom syndrome protein 1
<i>ANK2</i>	Ankyrin 2
<i>ANK3</i>	Ankyrin-3
<i>ANKRD1</i>	Ankyrin repeat domain-containing protein 1
<i>APOA5</i>	Apolipoprotein A-V
<i>APOB</i>	Apolipoprotein B-100
<i>APOC3</i>	Apolipoprotein C-III
<i>ATPAF2</i>	ATP synthase mitochondrial F1 complex assembly factor 2

<i>BAG3</i>	BAG family molecular chaperone regulator 3
<i>BMPR1B</i>	Bone morphogenetic protein receptor type-1B
<i>BMPR2</i>	Bone morphogenetic protein receptor type II
<i>BRAF</i>	Serine/threonine-protein kinase B-raf
<i>BSCL2</i>	Seipin
<i>CACNA1C</i>	Voltage-dependent L-type calcium channel subunit alpha-1C
<i>CACNA1D</i>	Voltage-dependent L-type calcium channel subunit alpha-1D
<i>CACNA2D1</i>	Voltage-dependent calcium channel subunit alpha-2/delta-1
<i>CACNB2</i>	Voltage-dependent L-type calcium channel subunit beta-2
<i>CALM1</i>	Calmodulin
<i>CALM2</i>	Calmodulin
<i>CALR3</i>	Calreticulin 3
<i>CAPN3</i>	Calpain-3
<i>CASQ2</i>	Calsequestrin-2
<i>CAV1</i>	Caveolin-1
<i>CAV3</i>	Caveolin-3
<i>CBL</i>	E3 ubiquitin-protein ligase CBL
<i>CBS</i>	Cystathionine beta-synthase
<i>CETP</i>	Cholesteryl ester transfer protein
<i>COL1A1</i>	Collagen alpha-1(I) chain
<i>COL1A2</i>	Collagen alpha-2(I) chain
<i>COL3A1</i>	Collagen alpha-1(III) chain
<i>COL5A1</i>	Collagen alpha-1(V) chain
<i>COL5A2</i>	Collagen alpha-2(V) chain
<i>COQ2</i>	4-hydroxybenzoate polyprenyltransferase, mitochondrial
<i>COX15</i>	Cytochrome c oxidase assembly protein COX15 homolog
<i>COX6B1</i>	Cytochrome c oxidase subunit 6B1
<i>CRELD1</i>	Cysteine-rich with EGF-like domain protein 1
<i>CRYAB</i>	Alpha-crystallin B chain

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

<i>CSRP3</i>	Cysteine and glycine-rich protein 3
<i>CTF1</i>	Cardiotrophin 1
<i>CTNNA3</i>	Catenin alpha-3
<i>DES</i>	Desmin **
<i>DLD</i>	Dihydrolipoyl dehydrogenase, mitochondrial
<i>DMD</i>	Dystrophin
<i>DNAJC19</i>	Mitochondrial import inner membrane translocase subunit TIM14
<i>DOLK</i>	Dolichol kinase
<i>DSC2</i>	Desmocollin 2
<i>DSG2</i>	Desmoglein 2
<i>DSP</i>	Desmoplakin
<i>DTNA</i>	Dystrobrevin alpha
<i>ELN</i>	Elastin
<i>EMD</i>	Emerin
<i>ENG</i>	Endoglin
<i>EYA4</i>	Eyes absent homolog 4
<i>FAH</i>	Fumarylacetoacetate
<i>FBN1</i>	Fibrillin 1
<i>FBN2</i>	Fibrillin 2
<i>FHL1</i>	Four and a half LIM domains protein 1 **
<i>FHL2</i>	Four and a half LIM domains 2
<i>FHOD3</i>	FH1/FH2 domain-containing protein 3 **
<i>FKRP</i>	Fukutin-related protein
<i>FKTN</i>	Fukutin
<i>FLNA</i>	Filamin-A
<i>FLNC</i>	Filamin-C
<i>FOXD4</i>	Forkhead box protein D4
<i>GAA</i>	Lysosomal alpha-glucosidase
<i>GATA4</i>	Transcription factor GATA-4

<i>GATA6</i>	Transcription factor GATA-6
<i>GATAD1</i>	GATA zinc finger domain-containing protein 1
<i>GDF2</i>	Growth/differentiation factor 2
<i>GFM1</i>	Elongation factor G, mitochondrial
<i>GJA1</i>	Gap junction alpha-1 protein
<i>GJA5</i>	Gap junction alpha-5 protein
<i>GLA</i>	Alpha-galactosidase A **
<i>GLB1</i>	Beta-galactosidase
<i>GNPTAB</i>	N-acetylglucosamine-1-phosphotransferase subunits alpha/beta
<i>GPD1L</i>	Glycerol-3-phosphate dehydrogenase 1-like protein
<i>GUSB</i>	Beta-glucuronidase
<i>HCN4</i>	Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4
<i>HFE</i>	Hereditary hemochromatosis protein
<i>HRAS</i>	GTPase HRas
<i>JAG1</i>	Jagged-1
<i>JPH2</i>	Junctophilin 2
<i>JUP</i>	Junction plakoglobin
<i>KCNA5</i>	Potassium voltage-gated channel subfamily A member 5
<i>KCND3</i>	Potassium voltage-gated channel subfamily D member 3
<i>KCNE1</i>	Potassium voltage-gated channel subfamily E member 1
<i>KCNE1L</i>	Potassium voltage-gated channel subfamily E member 1-like protein
<i>KCNE2</i>	Potassium voltage-gated channel subfamily E member 2
<i>KCNE3</i>	Potassium voltage-gated channel subfamily E member 3
<i>KCNH2</i>	Potassium voltage-gated channel subfamily H member 2
<i>KCNJ2</i>	Inward rectifier potassium channel 2
<i>KCNJ5</i>	G protein-activated inward rectifier potassium channel 4
<i>KCNJ8</i>	ATP-sensitive inward rectifier potassium channel 8
<i>KCNK3</i>	Potassium channel subfamily K member 3
<i>KCNQ1</i>	Potassium voltage-gated channel subfamily KQT member 1

<i>KLF10</i>	Krueppel-like factor 10
<i>KRAS</i>	GTPase KRas
<i>LAMA2</i>	Laminin subunit alpha-2
<i>LAMA4</i>	Laminin subunit alpha-4
<i>LAMP2</i>	Lysosome-associated membrane glycoprotein 2 **
<i>LDB3</i>	LIM domain-binding protein 3
<i>LDLR</i>	Low-density lipoprotein receptor
<i>LIAS</i>	Lipoyl synthase, mitochondrial
<i>LMNA</i>	Prelamin-A/C
<i>LRP6</i>	Low-density lipoprotein receptor-related protein 6
<i>MAP2K1</i>	Dual specificity mitogen-activated protein kinase kinase 1
<i>MAP2K2</i>	Dual specificity mitogen-activated protein kinase kinase 2
<i>MIB1</i>	E3 ubiquitin-protein ligase MIB1
<i>MLYCD</i>	Malonyl-CoA decarboxylase, mitochondrial
<i>MRPL3</i>	39S ribosomal protein L3, mitochondrial
<i>MRPS22</i>	28S ribosomal protein S22, mitochondrial
<i>MTO1</i>	Protein MTO1 homolog, mitochondrial
<i>MURC</i>	Muscle-related coiled coil protein
<i>MYBPC3</i>	Myosin-binding protein C, cardiac-type **
<i>MYH11</i>	Myosin-11
<i>MYH6</i>	Myosin-6
<i>MYH7</i>	Myosin-7 **
<i>MYL2</i>	Myosin regulatory light chain 2, ventricular/cardiac muscle isoform **
<i>MYL3</i>	Myosin light chain 3 **
<i>MYLK</i>	Myosin light chain kinase, smooth muscle
<i>MYLK2</i>	Myosin light chain kinase 2, skeletal/cardiac muscle
<i>MYOT</i>	Myotilin
<i>MYOZ2</i>	Myozenin 2
<i>MYPN</i>	Myopalladin

<i>NEBL</i>	Nebulette
<i>NEXN</i>	Nexilin
<i>NKX2-5</i>	Homeobox protein Nkx-2.5
<i>NOTCH1</i>	Neurogenic locus notch homolog protein 1
<i>NOTCH3</i>	Neurogenic locus notch homolog protein 3
<i>NPPA</i>	Atrial natriuretic factor
<i>NRAS</i>	GTPase NRas
<i>OBSL1</i>	Obscurin-like protein 1
<i>PCSK9</i>	Proprotein convertase subtilisin/kexin type 9
<i>PDHA1</i>	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial
<i>PDLIM3</i>	PDZ and LIM domain protein 3
<i>PHKA1</i>	Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform
<i>PITX2</i>	Pituitary homeobox 2
<i>PKP2</i>	Plakophilin 2
<i>PLN</i>	Cardiac phospholamban
<i>PLOD1</i>	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1
<i>PMM2</i>	Phosphomannomutase 2
<i>PRDM16</i>	PR domain zinc finger protein 16
<i>PRKAG2</i>	5'-AMP-activated protein kinase subunit gamma-2 **
<i>PRKG1</i>	cGMP-dependent protein kinase 1
<i>PSEN1</i>	Presenilin-1
<i>PSEN2</i>	Presenilin 2
<i>PTPN11</i>	Tyrosine-protein phosphatase nonreceptor type 11 **
<i>RAF1</i>	RAF proto-oncogene serine/threonine-protein kinase
<i>RANGRF</i>	Ran guanine nucleotide release factor
<i>RBM20</i>	Probable RNA-binding protein 20
<i>RYR2</i>	Ryanodine receptor 2
<i>SCN10A</i>	Sodium channel protein type 10 subunit alpha
<i>SCN1B</i>	Sodium channel subunit beta-1

<i>SCN2B</i>	Sodium channel subunit beta-2
<i>SCN3B</i>	Sodium channel subunit beta-3
<i>SCN4B</i>	Sodium channel subunit beta-4
<i>SCN5A</i>	Sodium channel protein type 5 subunit alpha
<i>SGCA</i>	Alpha-sarcoglycan
<i>SGCB</i>	Beta-sarcoglycan
<i>SGCD</i>	Delta-sarcoglycan
<i>SHOC2</i>	Leucine-rich repeat protein SHOC-2
<i>SKI</i>	Ski oncogene
<i>SLC22A5</i>	Solute carrier family 22 member 5
<i>SLC25A4</i>	ADP/ATP translocase 1
<i>SLC2A10</i>	Solute carrier family 2, facilitated glucose transporter member 10
<i>SLMAP</i>	Sarcolemmal membrane-associated protein
<i>SMAD1</i>	Mothers against decapentaplegic homolog 1
<i>SMAD3</i>	Mothers against decapentaplegic homolog 3
<i>SMAD4</i>	Mothers against decapentaplegic homolog 4
<i>SMAD9</i>	Mothers against decapentaplegic homolog 9
<i>SNTA1</i>	Alpha-1-syntrophin
<i>SOS1</i>	Son of sevenless homolog 1
<i>SPRED1</i>	Sprouty-related, EVH1 domain-containing protein 1
<i>SURF1</i>	Surfeit locus protein 1
<i>TAZ</i>	Tafazzin
<i>TBX1</i>	T-box transcription factor TBX1
<i>TBX20</i>	T-box transcription factor TBX20
<i>TBX5</i>	T-box transcription factor TBX5
<i>TCAP</i>	Telethonin
<i>TGFB2</i>	Transforming growth factor beta-2
<i>TGFB3</i>	Transforming growth factor, beta 3
<i>TGFB1</i>	TGF-beta receptor type-1

<i>TGFB2</i>	TGF-beta receptor type-2
<i>TMEM43</i>	Transmembrane protein 43
<i>TMEM70</i>	Transmembrane protein 70, mitochondrial
<i>TMPO</i>	Thymopoietin
<i>TNNC1</i>	Troponin C, slow skeletal and cardiac muscles **
<i>TNNI3</i>	Troponin I, cardiac muscle **
<i>TNNT2</i>	Troponin T, cardiac muscle **
<i>TPM1</i>	Tropomyosin alpha-1 chain **
<i>TRDN</i>	Triadin
<i>TRIM63</i>	E3 ubiquitin-protein ligase TRIM63 **
<i>TRPM4</i>	Transient receptor potential cation channel subfamily M member 4
<i>TSFM</i>	Elongation factor Ts, mitochondria
<i>TTN</i>	Titin
<i>TTR</i>	Transthyretin **
<i>TXNRD2</i>	Thioredoxin reductase 2, mitochondrial
<i>VCL</i>	Vinculin

** The genes considered priority for HCM are indicated in bold (n = 18).

Table 2 of the supplementary data

TPM1 p.Arg21Leu study population

Total individuals	n = 226
1. Carriers	83
Male	42 (50.6)
Female	41 (49.4)
1.a: Carriers with clinical data	67
1.b: Carriers without clinical data	2
1.c: Obligate simple heterozygous carriers without clinical data	14
2. Patients reported as hypertrophic cardiomyopathy without clinical and genetic data	13
3. Noncarriers with clinical data	24
4. First-degree relatives without clinical or genetic evaluation	106
5. Families	
5.a: Pedigrees	27
5.b: Index cases **	31

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

<i>5.c: No. carriers/family</i>	2.7
<i>5.d: Pedigrees with affected carriers in ≥ 2 generations</i>	12

The data are presented as absolute numbers or No. (%).

** Four index cases were reported without pedigree data.

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Table 3 of the supplementary dataClinical features of the *TPM1* p.Arg21Leu carriers diagnosed under the age of 35 years (n = 12)

Pedi gree	Id	Sex	Second variant	Index case	Phenoty pe	Age at Dx	Age	NY HA	AF	FHSD	Max LVH	TV / FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others	SCD risk
#3	IV.1	M	No	No	HCM atypical	18	27	I	-	-	33	-	-	-	-	-	-	Echo: LA 40 mm.	Competiti ve athlete -football	2.92
#6	IV.1	M		Yes	HCM septal	15	22	II	-	+	39	+	-	-	+(35 exerc)	-	-	Holter: 1 episode NSVT (8 complex)	Competiti ve athlete -football	6.37
#7	IV.2	M	No	No	HCM septal	26	35	I	-	+	14	-	-	-	-	-	-		Competiti ve athlete -football	2.48
#11	V.1	M	No	No	HCM septal	17	28	I	-	-	22	-	-	-	-	-	-	Echo: LA 46 mm ECG: negative T waves, high QRS voltages		3.29

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

#13	II.3	M	No	Yes	HCM septal	30	44	I	-	-	18	-	-	+	+(60)	-	-	Echo: LA 40 mm, diastolic dysfunction I. ECG: pathologic Q wave, abnormal repolarization, high QRS voltages.		2.24
#17	II.1	M	MYH7 Lys351 Asn (?)	Yes	HCM septal	33	36	I	-	-	16	-	-	-	-	-	-	Echo: LA 42 mm ECG: normal		2.00
#18		M	No	Yes	HCM septal	13	32	III	-	-	51	-	+	+	+(140)	-	-	Echo: LA 47 mm, RA enlarged, severe mitral regurgitation, SAM. Wave S < 8 (tissue Doppler)	Myectomy. ICD	9.94
#19	II.1	M	No	Yes	HCM septal	33	47	I	-	-	23	+	-	-	-	-	-	ECG: first-degree AVB, High QRS Voltage	Primary prevention – ICD implanted	4.59
#20	II.2	M	No	Yes	HCM septal	11	17	I	-	-	17	-	-	-	-	-	-			2.43
#25	II3	M	No	Yes	HCM septal	26	28	I	-	-	32	+	-	-	-	-	-	Echo: LA 35 mm	Treacher-Collins syndrome	5.86
#26	II.1	M	No	Yes	HCM septal	20	23	I	-	-	26	-	-	-	-	-	-	MRI: LGE 2 segments, LA 41 mm	Competitive athlete – football	3.46

#29	II.3	F	No	Yes	HCM septal	15	24	II	-	+	33.5	-	-	-	+(90)	-	-	-	MRI: LGE in all segments, LA 32 mm	Myectomy	5.35
-----	------	---	----	-----	------------	----	----	----	---	---	------	---	---	---	-------	---	---	---	------------------------------------	----------	------

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; AVB, atrioventricular block; Dx, diagnosis; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; ICD, implanted cardiofibrillator; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NSVT, nonsustained ventricular tachycardia; SAM, systolic anterior motion; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation.

Table 4 of the supplementary data

Major and nonmajor adverse cardiovascular events reported in the *TPM1* p.Arg21Leu pedigrees

Individual	Major cardiovascular events (age)	Observations
<i>Carriers</i>		
1. Male	Sudden death (55 y)	No left ventricular hypertrophy (autopsy)
2. Male	Heart transplant (48 y)	
3. Female	Heart failure death (68 y)	Systemic sclerosis (pulmonary fibrosis)
4. Obligate carrier, female	Unspecified cardiac death (79 y)	Unavailable clinical data
<i>First-degree relatives without genetic testing</i>		
5. Male	Sudden death (58 y)	Unknown genetic status
6. Male	Sudden death (40 y)	Unknown genetic status

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

		Additional familial genetic variant <i>TPM1</i> p.Met281Val – pathogenic
7. Female	Sudden death (19 y)	Unknown genetic status Additional familial genetic variant <i>MYH7</i> p.Gly741Arg – pathogenic
8. Male	Stroke-related death (64 y)	Unknown genetic status
9. Female	Heart failure death (58 y)	Unknown genetic status
10. Female	Stroke-related death (36 y)	Unknown genetic status
11. Female	Unspecified cardiac death (49 y)	Unknown genetic status Valvular heart disease
12. Male	Unspecified cardiac death (>65 y)	Unknown genetic status
<i>Second-degree relatives without genetic testing</i>		
13. Male	Sudden death (21 y)	Unknown genetic status. Sudden cardiac death during military exercise
14. Male	Sudden death (40 y)	Unknown genetic status
15. Male	Heart failure death (40 y)	Unknown genetic status
16. Male	Unspecified cardiac death (>56 y)	Unknown genetic status
Nonmajor adverse cardiovascular events (age) **		
<i>Carriers</i>		
1. Female	Septal myectomy (23 y)	Echo 33.5 mm
2. Male	Septal myectomy (32 y)	Echo 51 mm
3. Female	Mitral valve replacement (41 y)	Systolic anterior motion of mitral valve
4. Male	Nonfatal stroke (65 y)	
5. Female	Nonfatal stroke (73 y)	

[**] Nonmajor adverse cardiovascular events were not included in the survival curves.

Clinical features of homozygous *TPM1* p.Arg21Leu carriers (n = 4)

Pedigree	Id	Sex	Age at Dx	Age, y	Additional variant	Max wall thickness	Diastolic dysfunction	Left atrium	LVOTO	Ventricular arrhythmias	LGE	SCD risk
#1	II.3	Male	71	75	No	22 mm, asymmetric septal	II	48	120 mmHg exercise	NSVT	NR	3.85
#10	II.6	Female	67	70	No	17 mm, apical	II	46	118 mmHg at rest	Rare EVB	NR	3.04
#10	II.7	Female	61	68	<i>MYBPC3</i> p.Asp75Asn	28 mm, apical. Biventricular LVH	Restrictive	54	No	NSVT	Extensive	4.08
#13	II.2	Male	40	48	No	22 mm, asymmetric septal	II	45	40 mmHg at rest	No	NR	2.56

EVB, ectopic ventricular beats; Dx, diagnosis; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO, left ventricle outflow tract obstruction;

MRI, cardiac magnetic resonance; NSVT, nonsustained ventricular tachycardia; NR, not reported; SCD, sudden cardiac death.

Table 6 of the supplementary data

Clinical features of *TPM1* p.Arg21Leu carriers with an additional genetic variant (n = 12)

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

#10	II.7	F	MYBPC3 p.Asp75A sn	HCM Apical	<61	68	III	-	-	28	+	-	-	-	-	-	Holter: NSVT MRI: LA 54 mm, restrictive pattern, biventricular hypertrophy and LGE (subepicardial, medium mural, RV and apical). Apical hypokinesis.	Homozy gous p.Arg21 Leu	4.8
#15	III.5	F	MYL3 p.Met17 3Val	HCM septal	43	45	II	-	-	15	-	-	-	+(30)	-	-	MNR: Mild LGE in 2 segments	SAH	1.48
#15	II.3	M	MYL3 p.Met17 3Val	HCM reported	?	75	?	?	?	+	?	?	?	?	?	?	?	Patients were evaluat ed in other center	-
#17	II.1	M	MYH7 p.Lys351 Asn	HCM septal	33	36	I	-	-	16	-	-	-	-	-	-	Echo: LA 42 mm	Mild SAH	2.0
#23	II.2	F	MYH7 p.Leu133 3Val	HCM apical	61	63	I	-	-	15	-	-	-	-	-	-			0.87
#28		M	MYH7 p.Tyr582 Cys	HCM septal	56	57	II-III	-	-	17	-	-	-	+(110)	-	-	MRI: No LGE, LA 45 mm		2.39
#30	II.2	M	TPM1 p.Met28 1Val	HCM septal	39	56	I	-	+	23	+	-	-	-	-	-	MRI: LGE >3 segments		4.71

																	Holter: NSVT 3 beats		
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----------------------	--	--

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; ICD, implanted cardiodefibrillator; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricular outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); Max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NSVT, nonsustained ventricular tachycardia; SAM, systolic anterior motion; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation.

Comments regarding disease expression of each patient and the pathogenicity of the additional genetic variant are briefly described below:

- **Pedigree #3:** The single p.Arg21Leu carrier (III.3) with the additional variant (*MYH7* p.Thr1019Asn) in this family was unaffected at age 51 years. Both variants have been described as having late/incomplete penetrance.

We consider that ***MYH7* p.Thr1019Asn** is a likely rare pathogenic variant (present in 4 heterozygous carriers in the gnomAD database). It has been reported in the literature in a French family of African descent, in which 4 carriers had dilated cardiomyopathy and 5 carriers were unaffected. In our center, we identified it in some DCM cases, but mainly in multiple HCM patients. In some cases, the variant was identified in association with another sarcomere variant, as in this family.

- **Pedigree #9:** Individuals II.1, II.3 and I.2 were carriers of a pathogenic *TNNT2* variant, and expressed relatively mild phenotypes

We consider ***TNNT2* p.Arg278Cys** as a pathogenic HCM-associated variant. It has been identified in more than 220 carriers from >130 families. The variant appears to be associated with late/incomplete penetrance and mild-moderate hypertrophies. This incomplete penetrance explains the presence of this variant in a relevant number of individuals in control populations (98 heterozygous carriers in the gnomAD database). Other 3 missense variants affecting the same amino acid p.Arg278Pro/Leu/His have been also identified in multiple HCM patients with a similar clinical profile. Among the families carrying variants in Arg278, we have reported 9 sudden deaths in carriers and 17 sudden deaths in first/second-degrees relatives without genetic testing.

- **Pedigree #10:** *TPM1* p.Arg21Leu homozygous sisters (II.7 and II.6) showed severe phenotypes, although diagnosed at advanced ages (see: *Pedigree #10*). The homozygous carrier II.7 had a more marked phenotype that may be related to the presence of an additional likely pathogenic variant in *MYBPC3*. On the other hand, his 42-year-old daughter (III.6), clinically unaffected, was a double heterozygous carrier of *TPM1* p.Arg21Leu and *MYBPC3* p.Asp75Asn variants.

We consider ***MYBPC3* p.Asp75Asn** as a likely rare pathogenic variant (4 carriers in the gnomAD database). This variant has been identified in several HCM index cases, and familial studies showed the presence of both affected and unaffected carriers, suggesting late/incomplete penetrance.

- **Pedigree #15:** There are 2 carriers with complex genotype in this pedigree, but individual II.3 was studied in another center and no clinical details could be obtained.

We consider ***MYL3* p.Met173Val** as a likely pathogenic variant that has been associated with the development of hypertrophic cardiomyopathy (28 carriers from 14 families –half of them either unaffected or with unknown phenotype; so, familial cosegregation has not been clearly documented). It is present in

a single individual from the gnomAD database (control). A functional study suggesting a damaging effect has been published. Data suggest that this variant could be associated with late disease onset and incomplete penetrance.

- **Pedigree #17:** The young age at diagnosis of this carrier (II.1) could be related to the presence of the *MYH7* variant; however, he did not have a severe phenotype.

We consider ***MYH7* p.Lys351Asn** as a variant of unknown clinical significance. It has been described to date in this single HCM-patient, and also in a single carrier from the gnomAD population (control). Two missense variants located at the same amino acid (p.Lys351Glu/Thr) have been identified in HCM cases (6 unrelated carriers).

- **Pedigree #23:** Patient II.2, with a mild phenotype, carried an additional *MYH7* variant of uncertain significance.

We consider ***MYH7* p.Leu1333Val** to be a variant of unknown clinical significance. This is the third HCM index case that we have identified with the variant, and we have identified it in another index case with DCM phenotype. It has been reported in 4 heterozygous individuals from the gnomAD database. These data could suggest a late/incomplete penetrance for the variant, but its pathogenicity is still uncertain.

- **Pedigree #28:** Carrier of an additional variant of uncertain significance in *MYH7* with mild phenotype and low SCD risk. No myocardial fibrosis on MRI.

We consider ***MYH7* p.Tyr582Cys** to be a variant of unknown clinical significance. It has been identified only in this single patient to date. The variant is absent in control populations. It is located within a protein domain in which many other variants have been associated with HCM.

- **Pedigree #30:** Two pathogenic variants in *TPM1* were identified in this family. Only the individual II.2 carried both variants. Compared to his brother (II.1), who carried only *TPM1* p.Met281Val, the clinical expression of the index case was more severe and could suggest a synergic effect of the 2 variants. The paternal uncle (I.1) had a sudden death at 40 years of age; we cannot determine if he had only one of the family's variants or both.

We consider ***TPM1* p.Met281Val** to be a rare pathogenic variant (8 individuals in gnomAD). This variant has been identified in at least 25 HCM-pedigrees (30 affected carriers and 8 unaffected relatives). Familial cosegregation has been documented in at least 1 large family. Clinical data of the carriers suggest late/incomplete penetrance (only 5 carries have been diagnosed under the age of 45 years). Another rare variant affecting the same amino acid (p.Met281Thr) has been identified in 5 HCM patients (from 4 pedigrees).

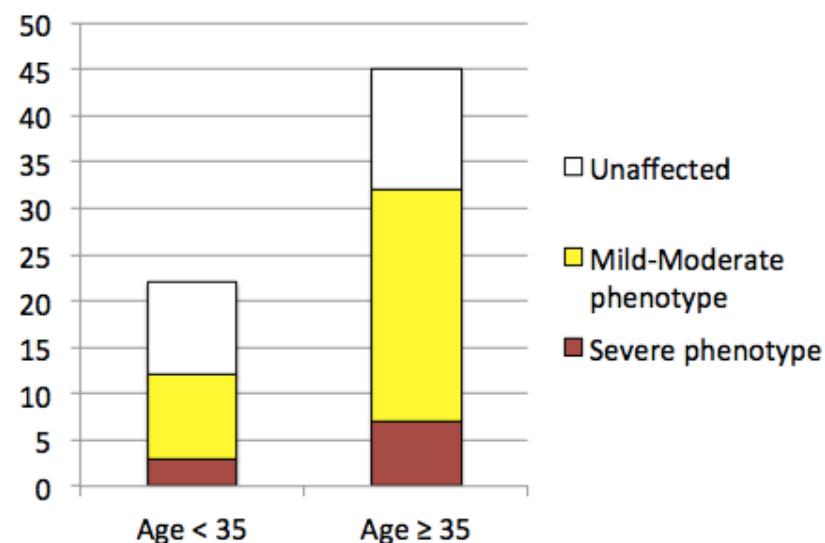
Table 7 of the supplementary data

Criteria for classifying *TPM1* p.Arg21Leu pathogenicity

Criteria*	Description	References **
(PS4) The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls	<ul style="list-style-type: none">• <i>TPM1</i> p.Arg21Leu present in 23/4099 (0.56%) hypertrophic cardiomyopathy probands, including 4 homozygous carriers. It was not present in 6462 patients (controls) sequenced with other inherited cardiac disorders in the same period ($P < .0001$)• The variant is listed in simple heterozygosity in 10/62784 (0.015%) individuals from the TOPMed program, and 5/120,158 individuals (0.004%) (age range 55-65 y) from the gnomAD database (non-TOPMed samples)	This study

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the *TPM1* p.Arg21Leu variant

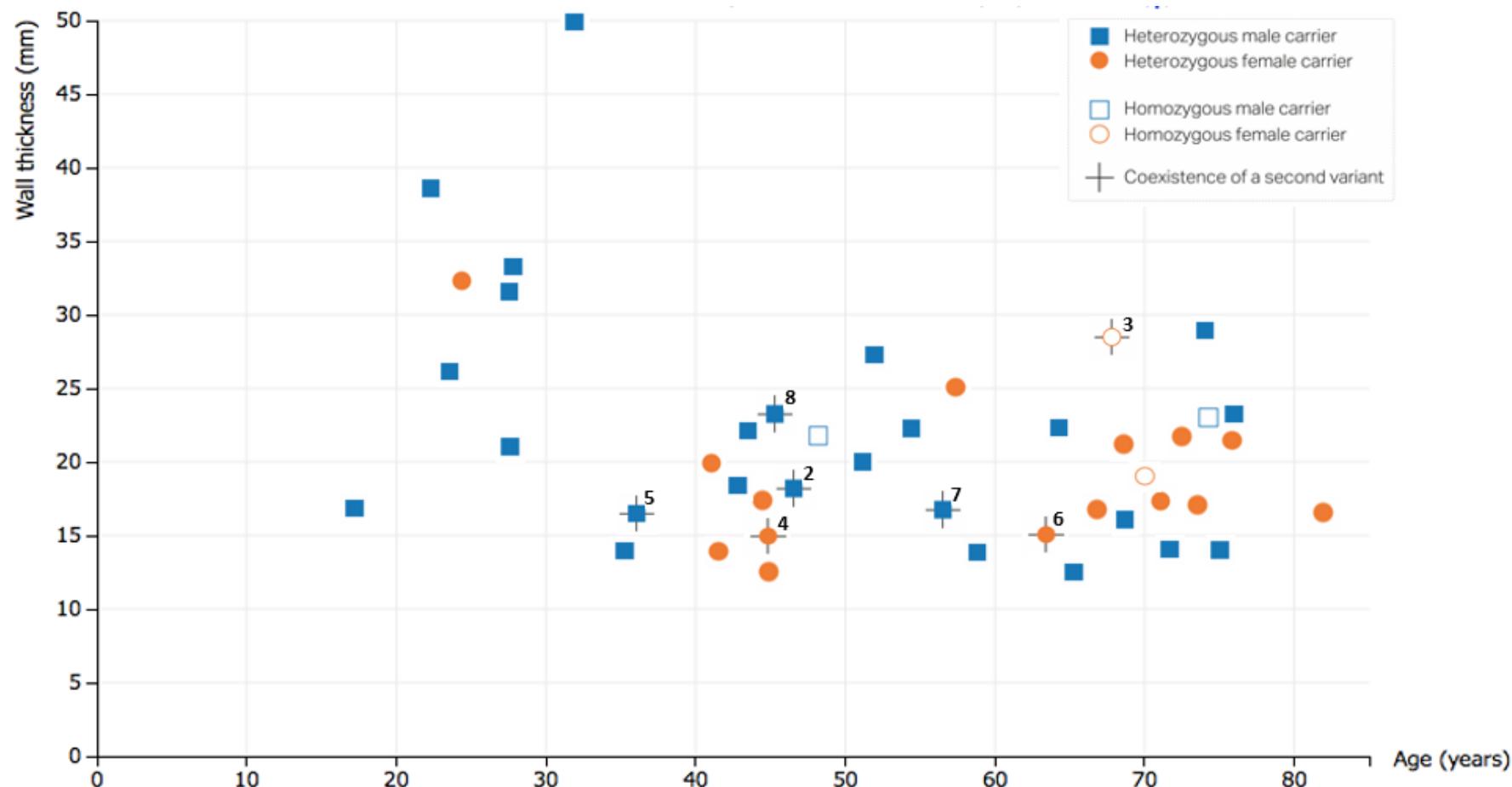
(PP1) Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease	<ul style="list-style-type: none">Combined LOD score = 3.95	This study
(PP2) Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are common mechanisms of disease	<ul style="list-style-type: none"><i>TPM1</i> gene Z = 2.87	the gnomAD database, 13
(PP3) Multiple lines of computational evidence supporting a deleterious effect	<ul style="list-style-type: none">Polyphen-2, MutationTaster, FATHMM, DANN	<i>In silico</i> predictors
(PM5) Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been previously seen	<ul style="list-style-type: none">p.Arg21His was identified in a single hypertrophic cardiomyopathy index case<i>In vitro</i> functional evidence supporting a damaging effect caused by p.Arg21His	1,2
(PM1) Located in a critical and well-established functional domain (N-terminal amino acids 1-25)	<p><i>TPM1</i> variants: p.Met8Arg, p.Gln9Lys/His/Leu, p.Lys15Asn/Glu/Arg, p.Glu16Gln, p.Asp20Asn, p.Ala22Thr, p.Glu23Gln, and p.Ala25Thr have been reported in multiple affected carriers (16 HCM and 8 DCM-patients) vs only p.Asn17Lys and p.Arg21Leu, p.Ala22Thr in the general population (gnomAD). [see figure 3 of the supplementary data]</p> <p><i>In vitro</i> functional assays:</p> <ol style="list-style-type: none">1) Disruption of the coiled coil structure in residues 15–22 N-terminal. Lys15, Ala18 and Ala22 and those of their coiled coil mates were critical for stability of N:C-terminal junction. Salt bridges and H-bonds, including Asp-20, Arg-21, Gln-24, and Glu-26, reinforce the close interhelix packing. N-terminal region of tropomyosin is necessary for stable binding to actin filaments2) p.Met8Arg and p.Lys15Asn cause changes to various properties of <i>TPM1</i> molecules, disrupting the interaction with F-actin. <i>In vitro</i> data obtained	2-12


	<p>point out that the N-terminal variants are more crucial for the head-to-tail interaction than those in the C-terminus</p> <ul style="list-style-type: none">3) 1-21 N-terminal residues of tropomyosin are involved in interactions with leiomodin protein (actin-binding capsular protein). p.Lys15Asn reduces binding affinity for both leiomodin and tropomodulin, which are responsible for correct lengths of thin filaments4) An intact coiled coil at the N-terminus of the <i>TPM1</i> is essential for tropomodulin binding	
--	--	--

[*] American College of Medical Genetics Criteria for interpretation of sequenced variants.

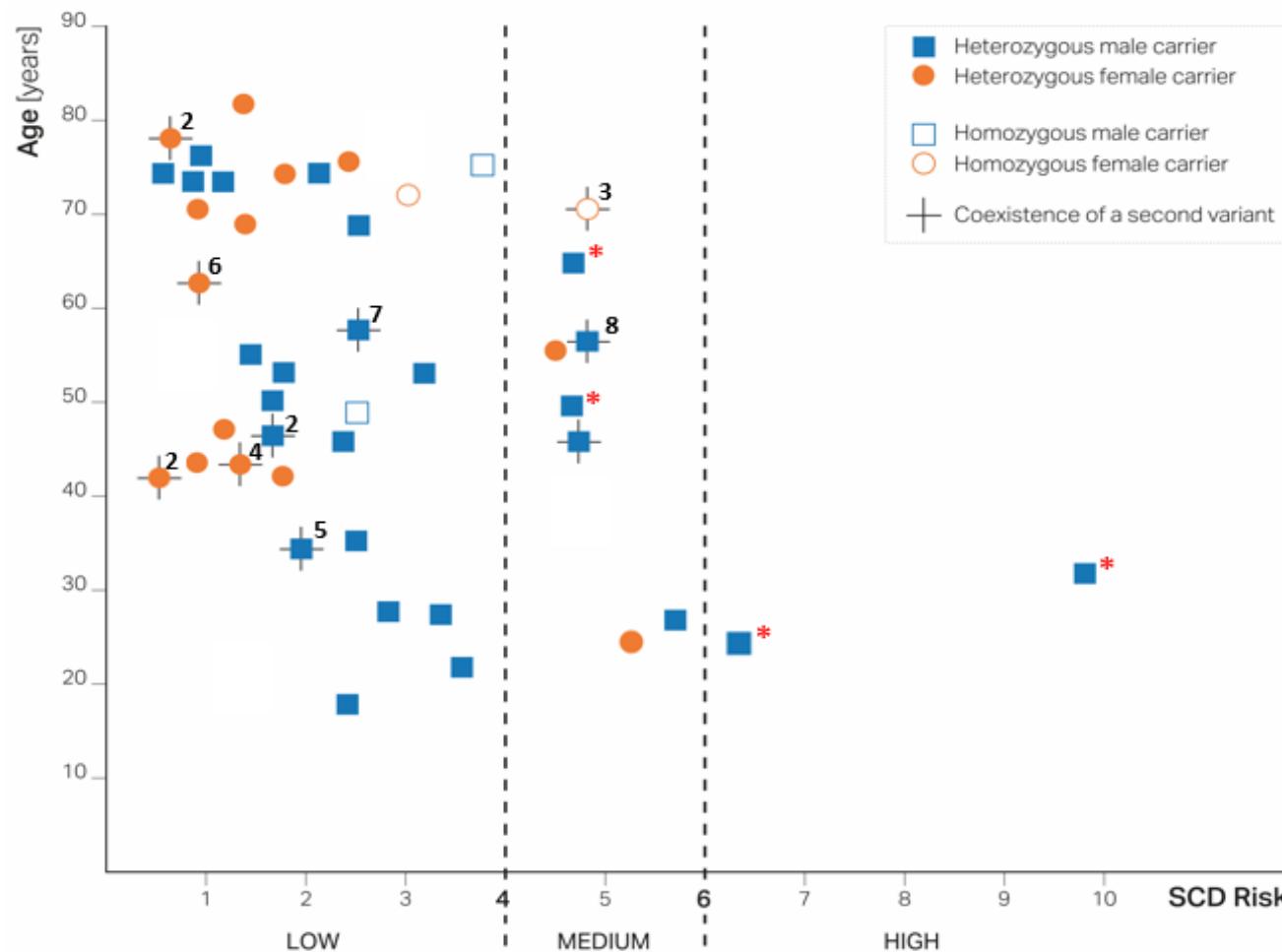
[**] See references at the end of the supplementary data.

Figure 1 of the supplementary data.


Carriers with clinical data (n = 67) by age and phenotype severity*

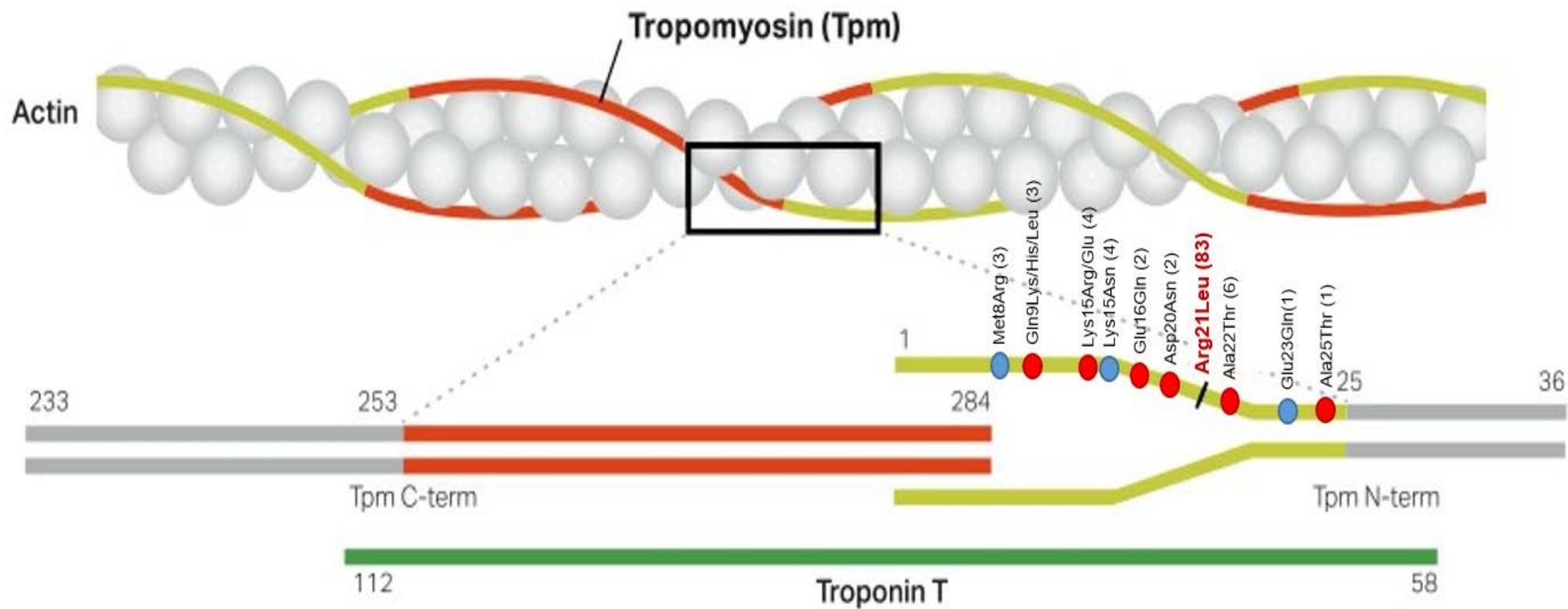
(*) **Severe phenotype criteria:** *TPM1 p.Arg21Leu* carriers who experienced a major cardiovascular event or those at high sudden cardiac death risk.

Figure 2 of the supplementary data.


Maximum left ventricular wall thickness (in mm) by sex, genotype and age at the last follow up in *TPM1* p.Arg21Leu affected carriers.

Numbers detail the genotype: **2.** *TNNT2* p.Arg278Cys (+++); **3.** *MYBPC3* p.Asp75Asn (+?); **4.** *MYL3* p.Met173Val (+?); **5.** *MYH7* p.Lys351Asn (?); **6.** *MYH7* p.Leu1333Val (?); **7.** *MYH7* p.Tyr582Cys (?); **8.** *TPM1* p.Met281Val (+++). (++) indicates a pathogenic variant, (+?) likely pathogenic variant, and (?) variant of unknown clinical significance.

Figure 3 of the supplementary data


TPM1 p.Arg21Leu sudden cardiac death risk scores (ESC calculator) by sex, genotype and age at the last follow up.

Numbers detail the genotype: see page above. (*) Red asterisks: carriers with ICD.

Figure 4 of the supplementary data.

N-terminal: C-terminal overlapping junction between 2 subsequent α Tpm.1.

At the top: α Tpm.1 molecules across the actin groove (one tropomyosin is represented in yellow, and the subsequent one in orange), with the N-terminal:C-terminal junction highlighted with a black rectangle. Below: The junction has been also reported as tail-head overlapping region; 1-25 amino acids in the N-terminal region participating in the junction, including Arg21Leu. HCM-related variants are shown in red circles, and DCM-variants in blue circles (n = number of carriers).

The junction is one of the 2 α Tpm.1 binding-sites with troponin T (in green). Figure drawn by the authors with data from Murakami K, Stewart M, nozawa K et al.

Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin T. Proc Natl Acad Sci U S A. 2008;105:7200-7205.

TPM1 p.Arg21Leu pedigrees

31 index cases:

27 pedigrees

12 pedigrees with LOD score calculated

Legends:

Narrow indicates the **Proband** or index case

Square indicates male/circle indicates female

HCM affected male/female carrier

Unaffected (?) male/female carrier-with only
minor ECG/Echo changes

Normal male/female—clinically evaluated

Deceased male/female individual

* **Obligate carrier** is described below of the individual.

NCE

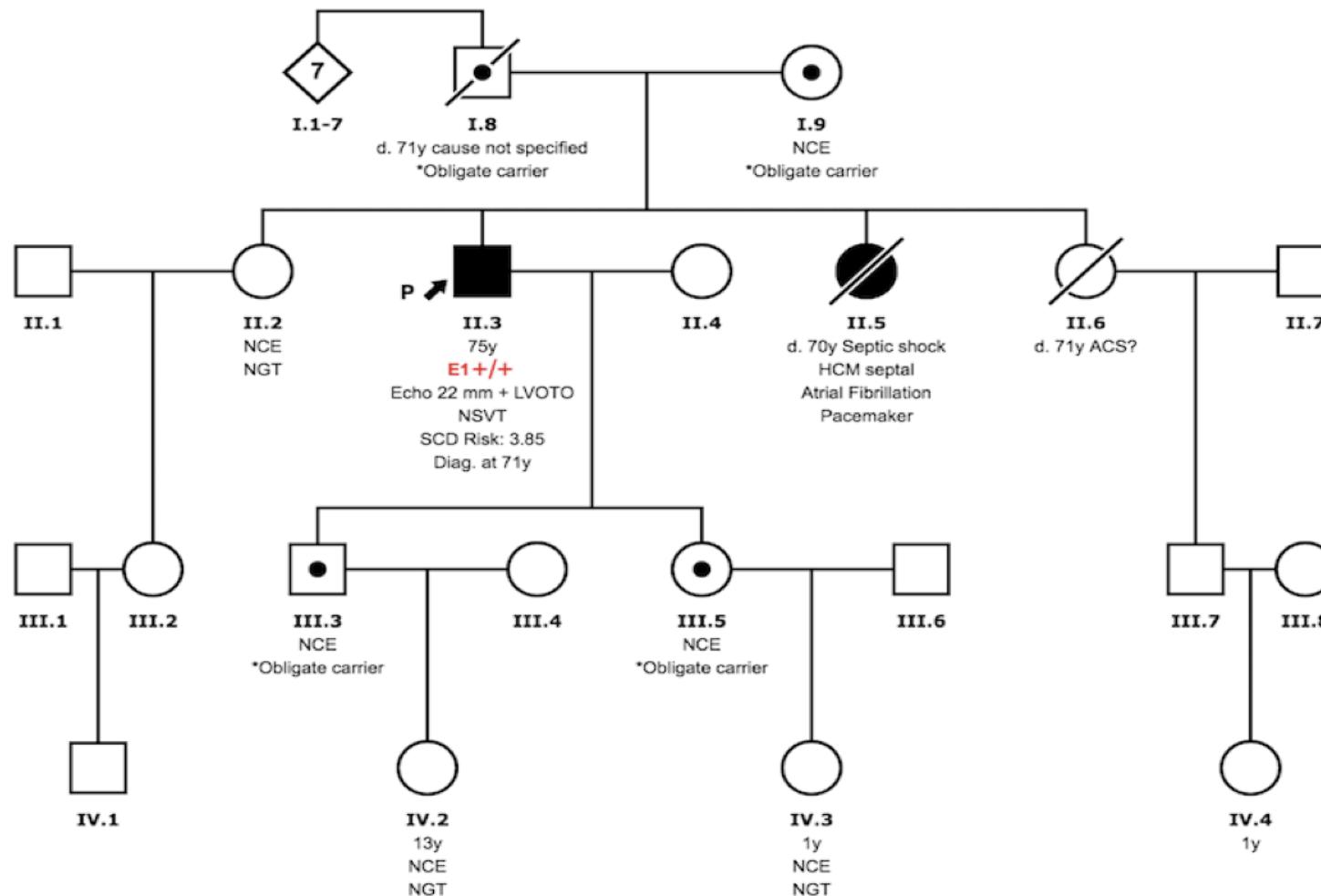
No clinical evaluation

NGT

No genetic testing

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

Unaffected male/female carrier


Presence of a second genetic disorder in a male/female individual

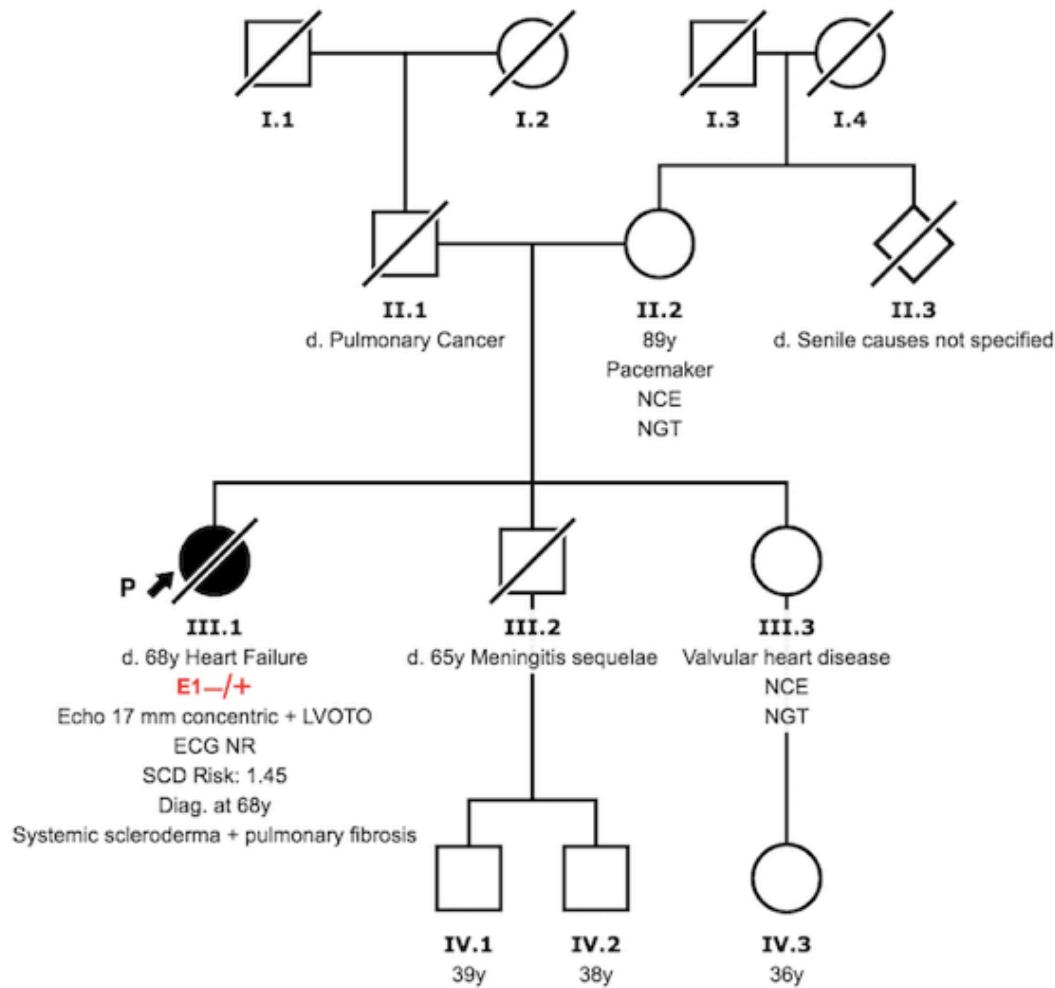
Male individual with strong suspicious of HCM/female individual or clinical data not reported

Pedigree #1

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

E1 TPM1 (g.63335090G>T, c.62G>T, p.Arg21Leu)

"+/+" = Homozygous, "+/—" = Heterozygous, "+—" = Hemizygous, "-/-" = Not found, "-/-" = Not found


Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

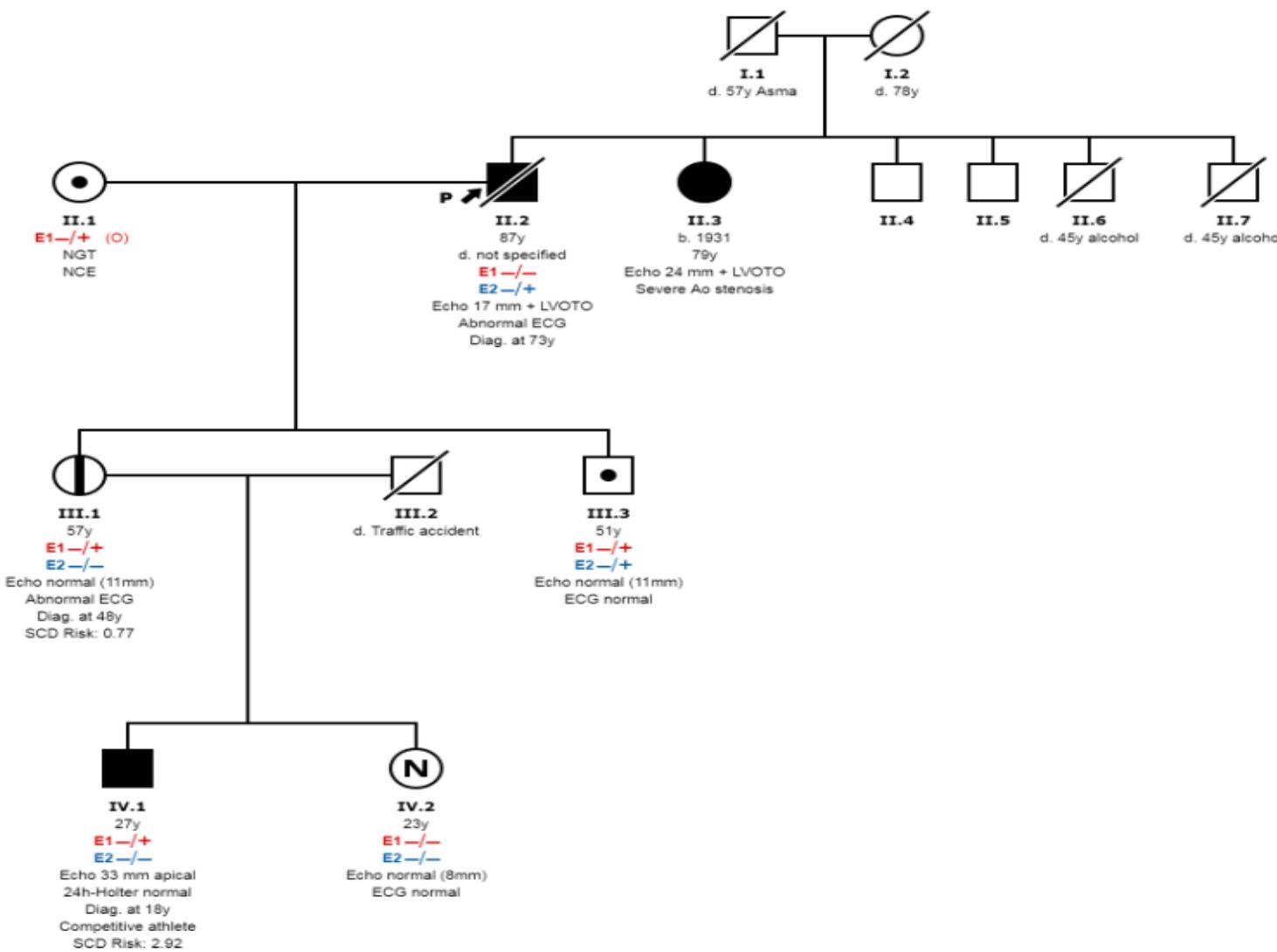
Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotyp e	Age at Dx	Age , y	NY HA	AF	FHSD	Max LVH	TV/ FV	Synco pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.3	M	Yes (Homoz)	No	HCM septal	71	75	I	-	-	22	NSTV	-	-	+ (zero at rest; 120 exercise)	-		Echo: LA 48mm, Diastolic dysfunction II, mitral and aortic insufficiency Holter: NSVT	
III.5	F	Obligate carrier		NCE														
III.3	M	Obligate carrier		NCE														
I.8	M	Obligate carrier		NCE														Unspecified Death 71 y
I.9	F	Obligate carrier		NCE														
II.5	F	NGT		HCM Septal	?	70	?	+	-	?	?	?	?	?	?	Pacemaker implanted (Brad-tachy synd)	Death 70 y sepsis	

Abn BP, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation. E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #2

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Id	Sex	TPM1 Arg21Leu	Other mutat eu	Phenotype	Age at Dx	Age, y	NYHA	AF	FHSD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (peak grad)	LV Dysf (EF)	Events	Additional features	Others
III.1	F	Yes	No	HCM concentric	68	68	IV	-	-	17	-	-	-	+ (53)	-(75)	Heart failure death 68 y	Echo: LA 43 mm, diastolic dysfunctio n I, moderate tricuspid regurgitati on. PSAP 70 mmHg	Pulmonary fibrosis, systemic scleroder ma; NO systolic dysfunction was reported

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

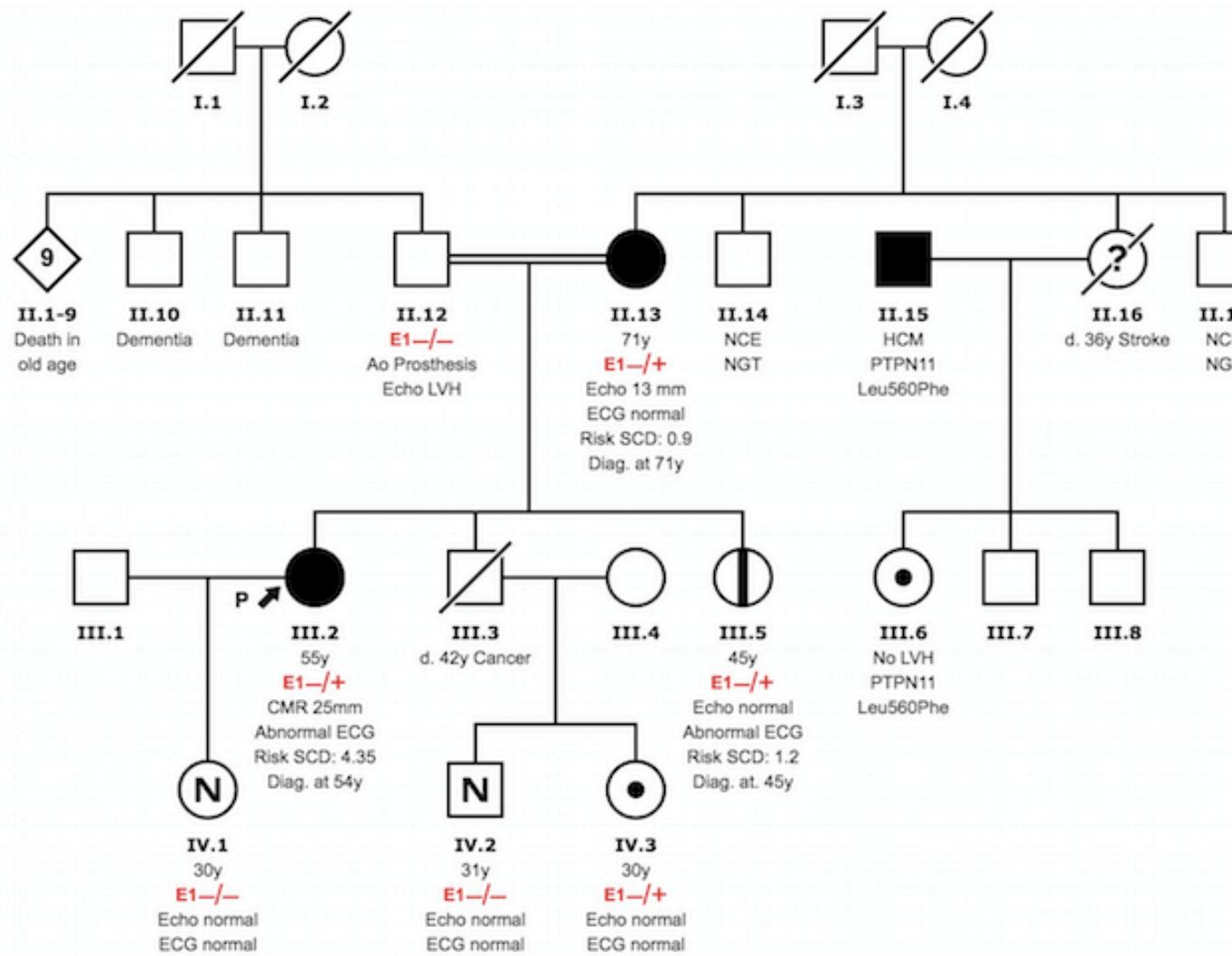
Pedigree #3

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NY HA	AF	FH SD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others
II.2	M	No	MYH7 Thr1019 Asn (+?)	HCM septal	73	83	II	+	-	16	-	-	-	+ (30-55 at rest, >250 Valsalva)	-(>55)		ECG LVH, anterolateral negative T waves		
III.1	F	Yes	No	Not affected (?)		57	I	-	-	11	-	-	-	-	-(83)		Echo: Diastolic dysfunction I. ECG: pathologic Q waves		
III.3	M	Yes	MYH7 Thr1019 Asn (+?)	Not affected		51	I	-	-	11	-	-	-	-	-(61)		ECG normal		
IV.1	M	Yes	No	HCM atypical	18	27	I	-	-	33	-	-	-	-	-(67)		ECG high QRS voltage, pathological Q waves. LA 40 mm	Competitive athlete football	
II.1	F	Obligate carrier	?	NCE															

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu.;E2, other variant (see table). The index case is described in the gray line.

Comments Pedigree #3:


1. Complex genotype: The single p.Arg21Leu carrier (III.3) with the additional variant (*MYH7 p.Thr1019Asn*) in this family was unaffected at age 51 years. Both variants have been described as having late/incomplete penetrance.

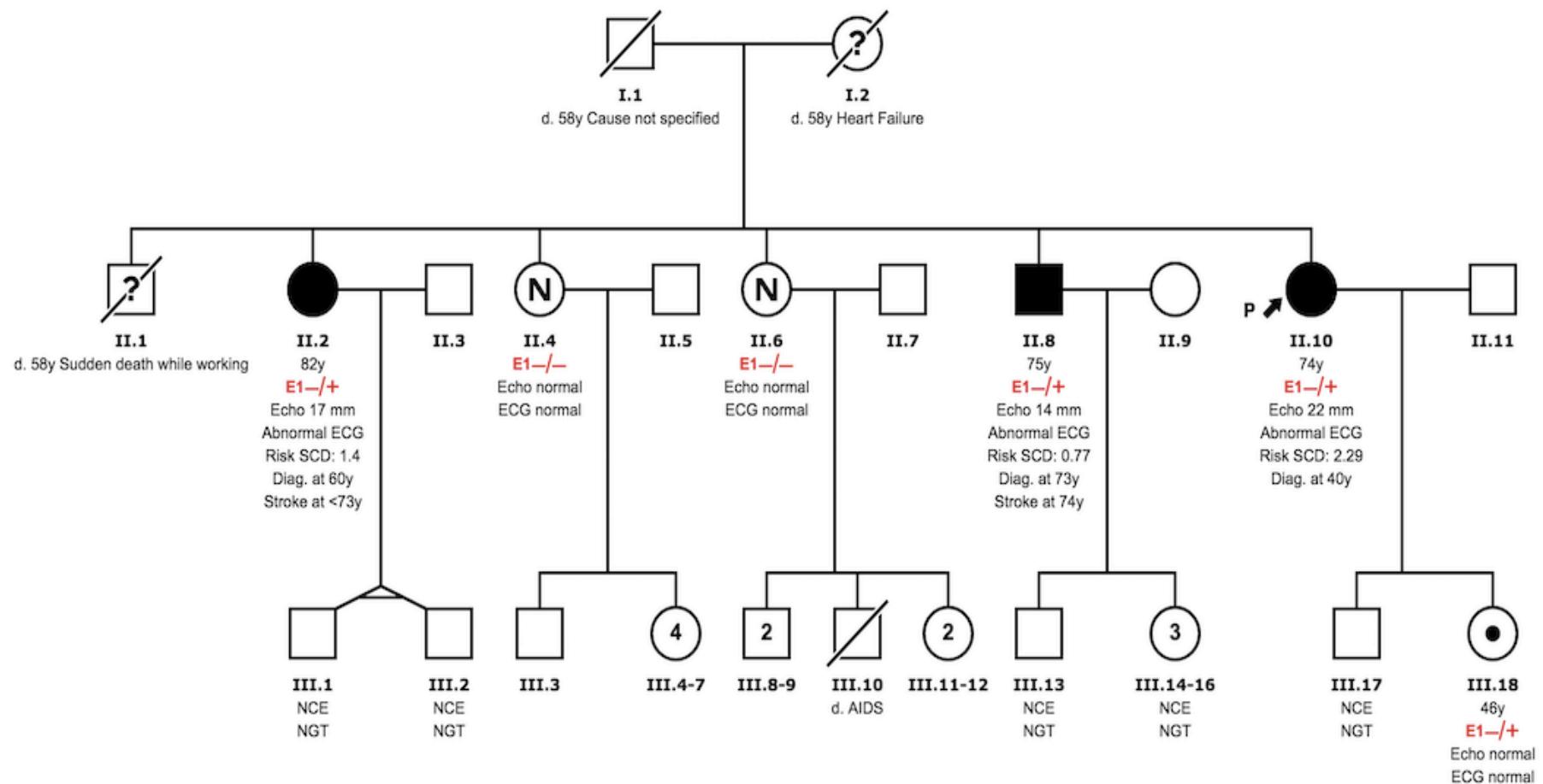
We consider that ***MYH7 p.Thr1019Asn*** is a likely rare pathogenic variant (present in 4 heterozygous carriers in the gnomAD database). It has been reported in the literature in a French family of African descent in which 4 carriers had dilated cardiomyopathy and 5 carriers were unaffected. In our center, we have identified it in some DCM cases, but mainly in multiple HCM patients. In some cases, the variant was identified in association with another sarcomere variant, as in this family.

>> In this family, the index case (II.2) was studied by NGS panel; however, the familial variant in *MYH7* was not identified in other family members (III.1 and IV.1) by Sanger sequencing. Therefore, individual III.1 was tested with an NGS panel, which allowed the identification of the *TPM1 p.Arg21Leu*.

Pedigree #4

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NY HA	AF	FH SD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others
III.2	F	Yes	No	HCM septal	54	58	II	+	-	25	-	+	-	-	-(60)		MRI: LA 45 mm, diastolic dysfunction, LV mass 173g. ECG: negative T waves, pathologic Q waves	SAH	
III.5	F	Yes		Not affected (?)	45	45	I	-	-	13	-	-	-	-	-(>55)		ECG: Abnormal progression of R wave V ₁ -V ₃		
II.13	F	Yes		HCM	71	71	I	-	-	13	-	-	-	-	-(>55)		ECG normal. Echo: Mild Ao, mild RT	SAH	
IV.3	F	Yes		Not affected		30	I	-	-	-	-	-	-	-	-		ECG normal Echo normal		
II.16	F	NGT		?		36											Stroke-related death 36-y		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SAH, systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

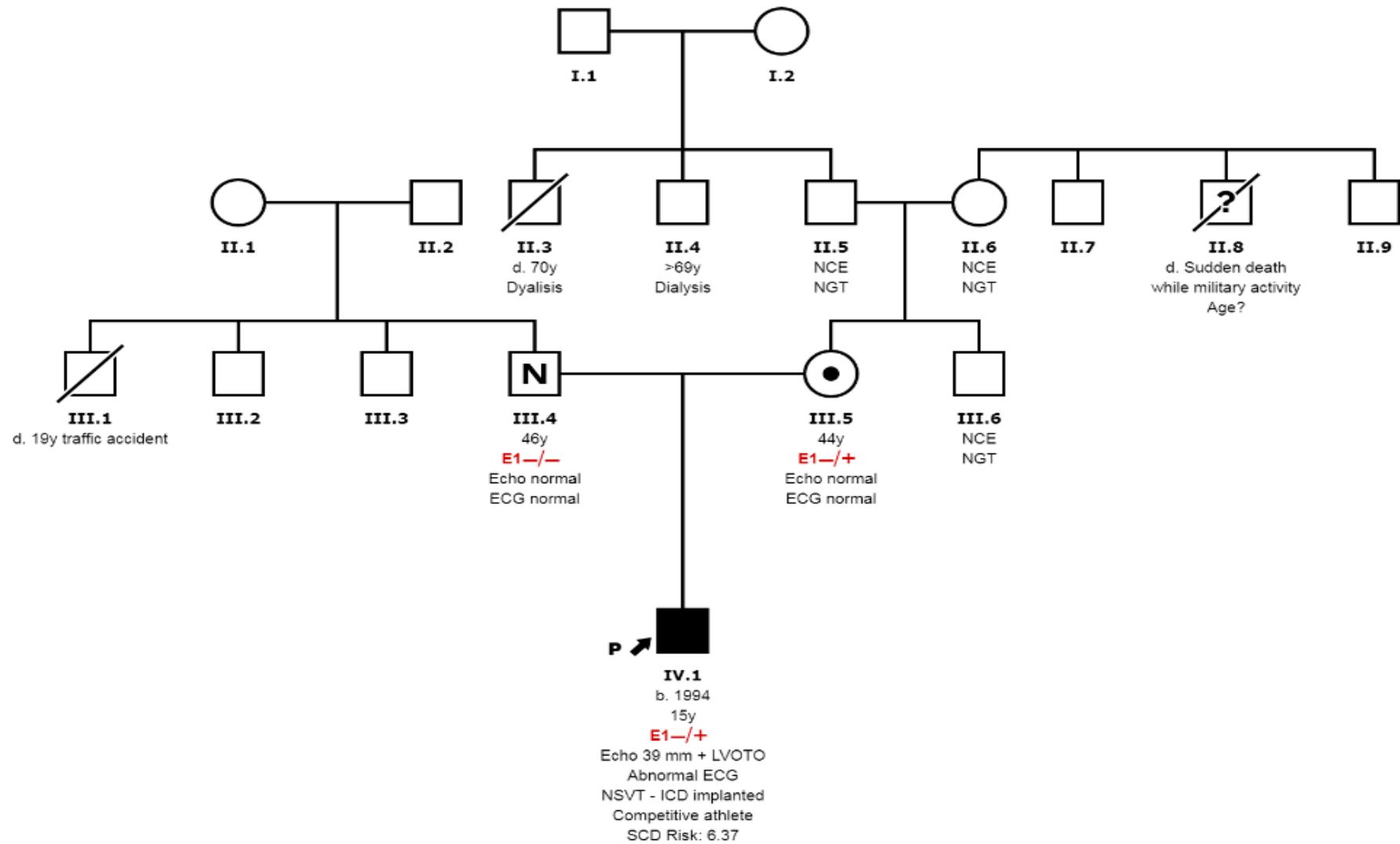
Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

PS: At the pedigree image: Patients II.15 and III.6, who were carriers of a PTPN11 variant, and not of the TPM1 variant, were not included in our study population.

Pedigree #5

LOD SCORE: 0.17

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:

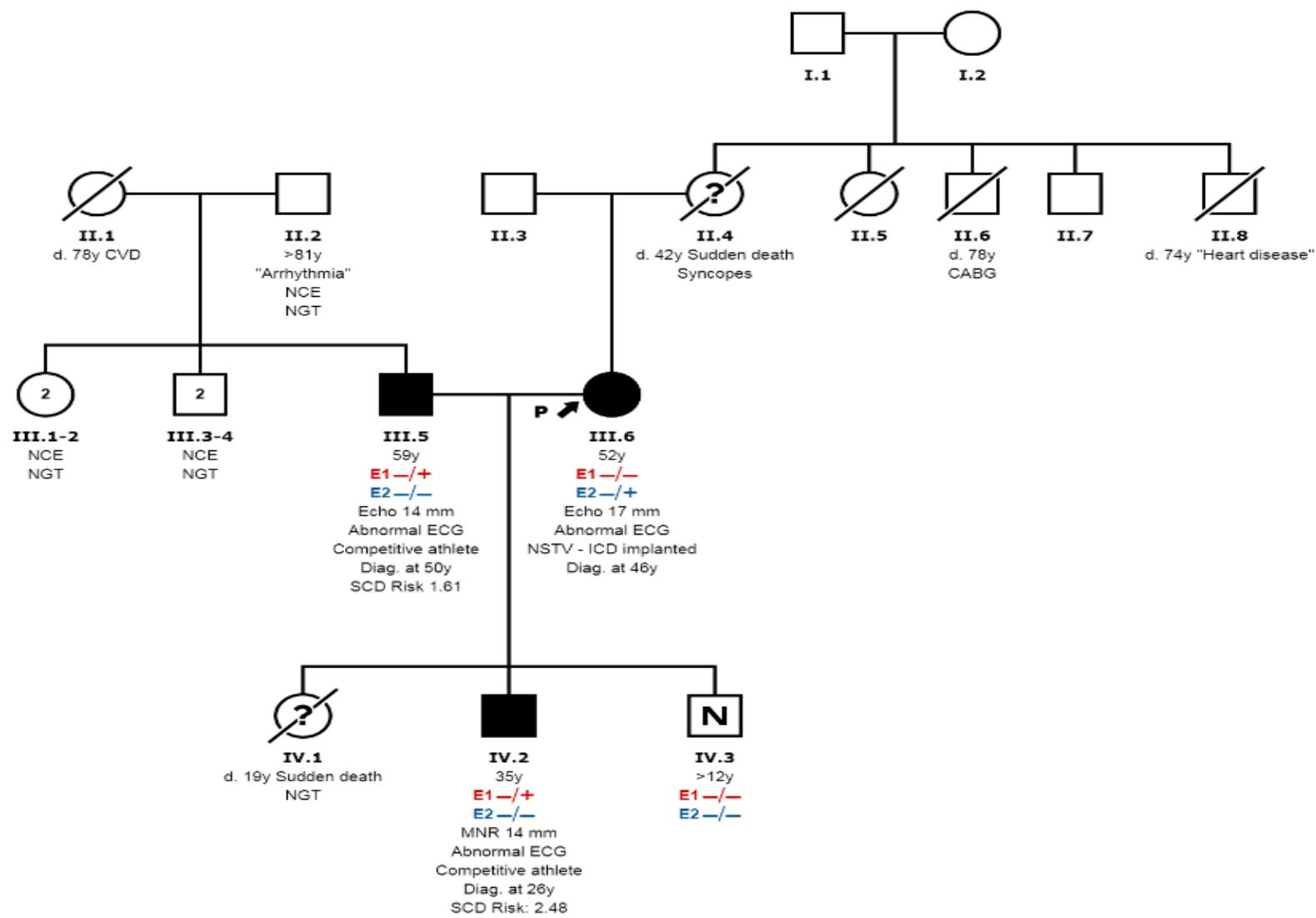

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty- pe	Age at Dx	Age , y	NY HA	AF	FHSD	Max LVH	TV/ FV	Synco- pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.10	F	Yes	No	HCM septal	40	74	II	+	+	22	-	-	-	+ (50)	-(78)		ECG: High QRS voltage, negative T waves/AF. MRI: LA: 57 mm, LGE septal (RV- Apex)	
II.2	F	Yes		HCM septal	60	82	I	-	+	17	-	-	-	-(70)	Stroke at <73y	ECG: High QRS voltage, pathologic Q waves. Echo: LA: 57 mm		
II.8	M	Yes		HCM septal	73	75	I	-	+	14	-	-	-	-(79)	Stroke at 74y	ECG: Pathologic Q waves		
I.2	F	NGT		?		58								+	Heart failure death 58y			
II.1	M	NGT		?		58									Sudden death 58- y while working			
III.18	F	Yes		Not affected		46												

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation.

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

Pedigree #6

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant



Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age , y	NY HA	AF	FHSD	Max LVH	TV/ FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
IV.1	M	Yes		HCM septal	15	22	II	-	+	39	+	-	-	+ (35 exerc)	- (78)		ECG: pathologic Q wave, high QRS voltage. Holter: VEB rare, 1 episode of NSVT (8 complex) MRI: LA 41 mm, mild LVOTO, basal fibrosis and midseptal, apical.	Competitive athlete football ICD implanted 22 y
III.5	F	Yes	No	Not affected		44	-	-	+	-	-	-	-	-	-			
III.4	M	No		Not affected		46	-	-	-	-	-	-	-	-	-			
II.8	M	?		?		21										Sudden death - age 21 y		During military activity

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction);

max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VEB, ventricular ectopic beats; VT/VF, ventricular tachycardia/ventricular fibrillation. E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

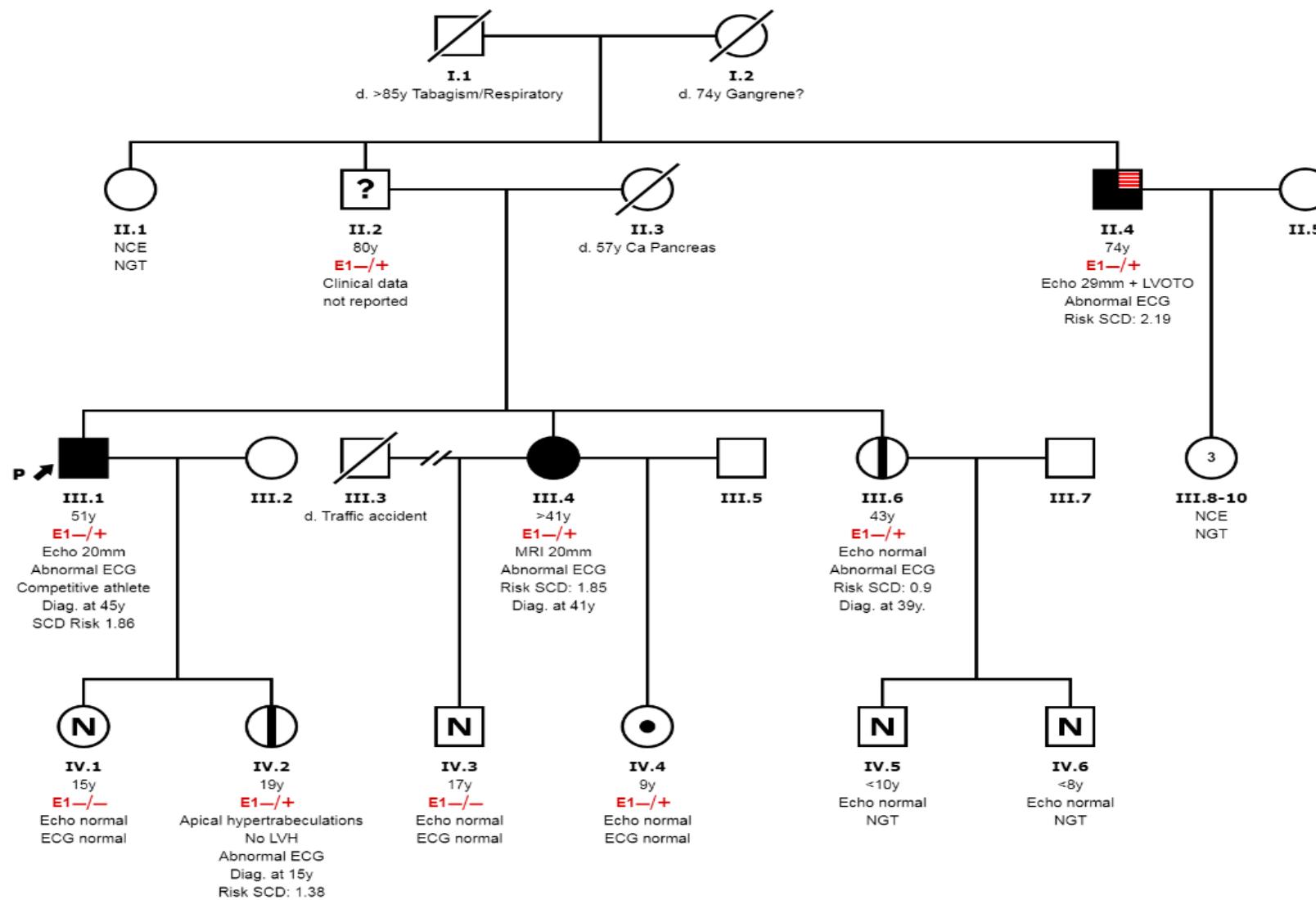
Pedigree #7

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty pe	Age at Dx	Age , y	NY HA	AF	FHSD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others
III.6	F	No	MYH7 Gly741 Arg (+++)	HCM septal	46	52	I	-	+	17	+	-	-	-	-(61)		ECG: Low QRS voltage, inv T waves, pathol. Q waves MNR: Late enhancemen t by fibrosis Holter: NSVT		ICD implanted 47 y
III.5	M	Yes		HCM septal	50	59	II	-	-	14	-	-	-	-	-(58)		ECG: Pathologic Q waves	Competitiv e athlete – football	
IV. 2	M	Yes	No	HCM septal	26	35	I	-	+	14	-	-	-	-	-(75)		ECG: High QRS voltage, pathologic Q waves	Competitiv e athlete – football	
IV. 1	F	NGT		SCD		19			+		+					Sudden death – 19 y			

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VEB, ventricular ectopic beats; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu; E2, other variant (see table). The index case is described in the gray line;

Comments pedigree #7:


1. Complex genotype: Two pathogenic variants are associated with HCM in this family, but there is no carrier with both variants. The index case (III.6) had been evaluated after her daughter's (IV.1) sudden death, with a previous family history of sudden death in her mother (II.4). We could not determine the daughter's (IV.1) genotype; she could be carrier of both or of only 1 of the family's variants.

We consider ***MYH7 p.Gly741Arg*** to be a pathogenic variant. Gly741 is a hotspot residue with 3 likely pathogenic missense variants affecting multiple HCM patients (73 cases from 41 families in total).

PS: The sudden cardiac death reported in patient II.4 was not included in our survival analysis.

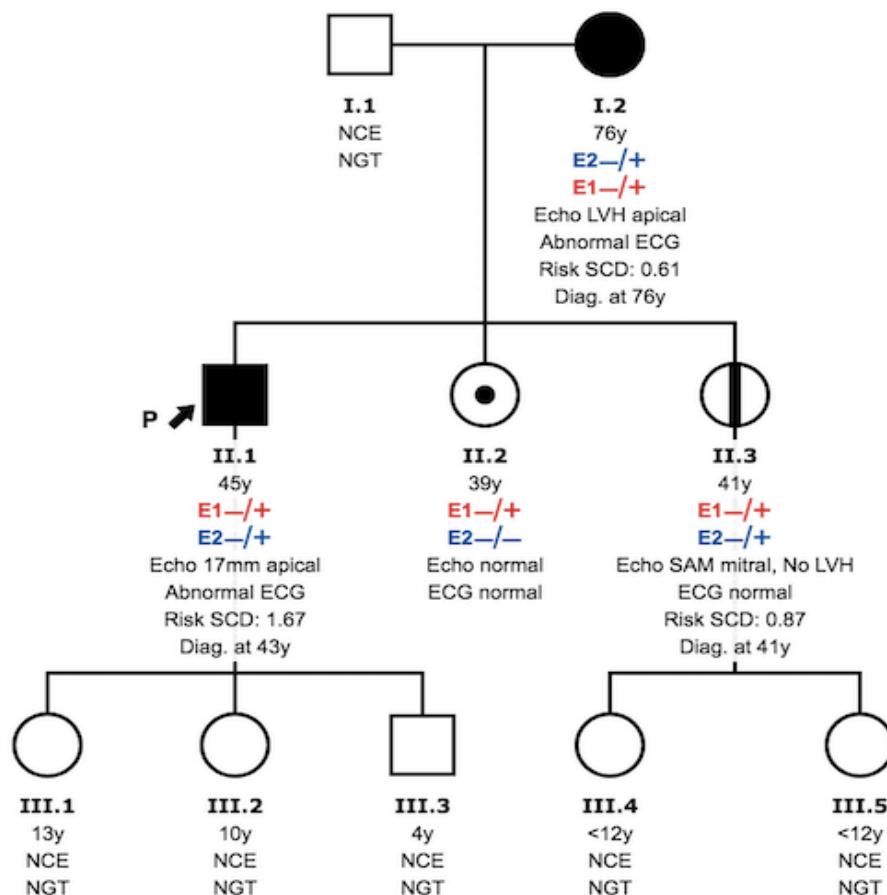
>> In this family, the index case (III.6) was studied by NGS panel; however, the familial variant in *MYH7* was not identified in her son (IV.2) by Sanger sequencing. Therefore, individual IV.2 was tested with an NGS panel, which allowed the identification of the *TPM1 p.Arg21Leu*.

Pedigree #8

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty pe	Age at Dx	Age, y	NY HA	AF	FH SD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV dysf (EF)	Events	Additional features		Others
III.1	M	Yes	No	HCM septal	45	51	I	-	-	20	-	-	-	-	-	-(78)		ECG: negative T waves V ₁₋₆ . MRI: LA 40 mm, extensive LGE (6 segments)	Competitive athlete
III.4	F	Yes		HCM septal	41	>41	I	-	-	20	-	-	-	-	-	-(78)		ECG: negative T waves V ₁₋₃ , pathologic Q waves V ₅₋₆ MRI: No report of LGE	
III.6	F	Yes		Not affected (?)		43	I	-	-	-	-	-	-	-	-	-		ECG: altered R wave V ₁₋₃	
II.4	M	Yes		HCM septal	48	74	I	+	-	29	-	-	-	+(60)	-(55)			Echo: mild mitral insufficiency, moderate ascending aortic dilatation (47 mm) ECG: Paroxysmal atrial fibrillation, in	Limb-girdle muscular dystrophy

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH,


left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p;Arg21Leu. The index case is described in the gray line.

Comments pedigree #8:

1. Competitive sports: Individual III.1 showed low SCD risk by ESC calculator, but showed extensive myocardial fibrosis (6 affected cardiac segments).

Pedigree #9

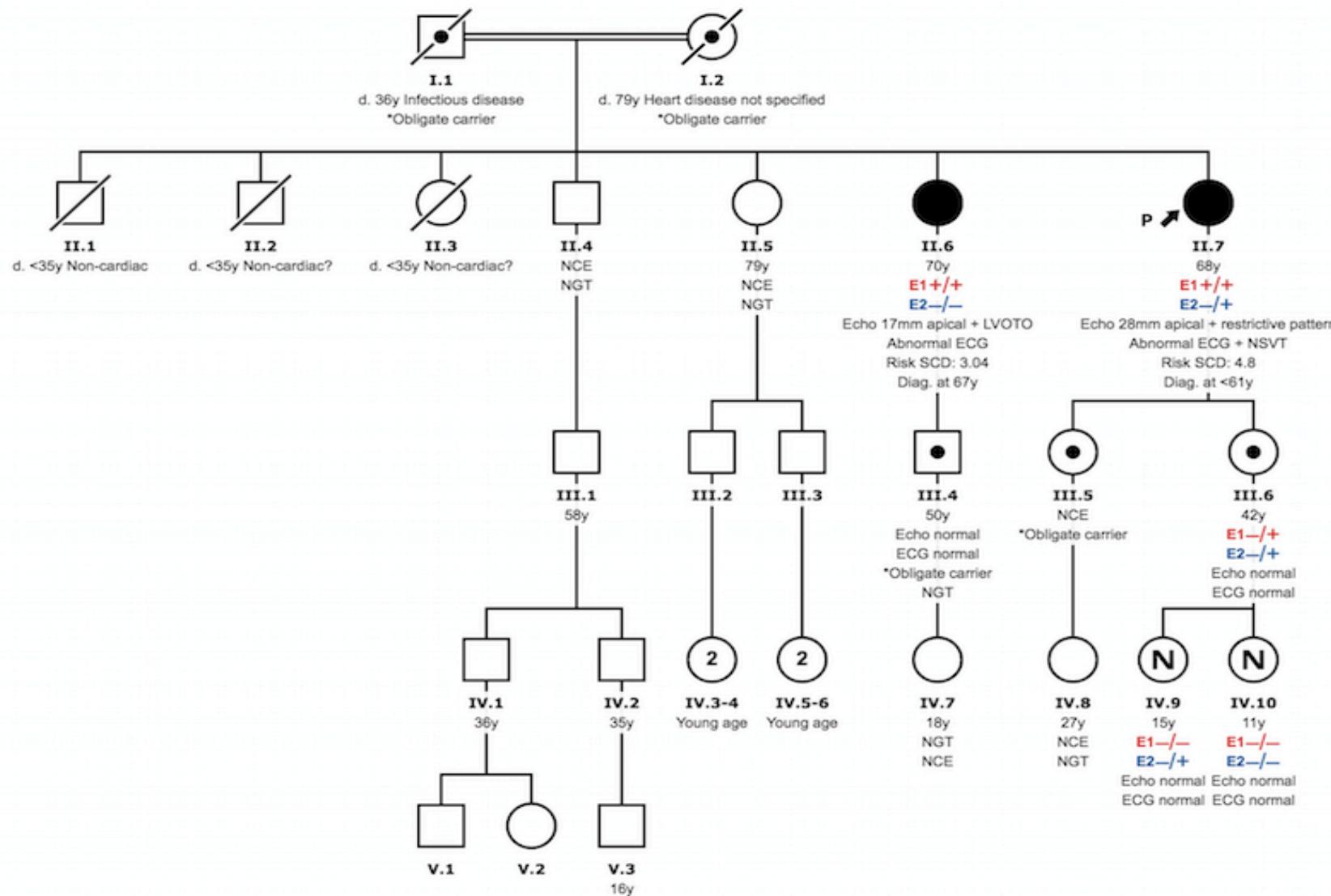
Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NY HA	AF	FH SD	Max LVH	TV/ FV	Synco pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others	
II.1	M	Yes	<i>TNNT2</i> Arg278Cys (+++)	HCM Apical	43	45	I	-	-	17	-	-	-	-	-	-(62)		Echo: LA 40 mm. MNR: LGE mesobasal, anterior septal, basal anterior, mesoinferior		
II.2	F	Yes	No	Not affected		39	-	-	-	-	-	-	-	-	-	-				
II.3	F	Yes	<i>TNNT2</i> Arg278Cys (+++)	Not affected (?)		41	I	-	-	-	-	-	-	-	-	-	Echo SAM mitral ECG: normal Echo: SAM mitral			
I.2	F	Yes	<i>TNNT2</i> Arg278Cys (+++)	HCM apical	76	76	I	-	-	+	-	-	-	-	-	-	ECG: negative T waves, high voltages. MNR: no LGE			

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; SAH, systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line

Comments pedigree #9:


1. Complex genotypes: Individuals II.1, II.3 and I.2 were carriers of a pathogenic *TNNT2* variant, and expressed relatively mild phenotypes.

We consider ***TNNT2 p.Arg278Cys*** to be a pathogenic HCM-associated variant. It has been identified in more than 220 carriers from > 130 families.

The variant appears to be associated with late/incomplete penetrance and mild-moderate hypertrophies. This incomplete penetrance explains the presence of this variant in a relevant number of individuals in control populations (98 heterozygous carriers in the gnomAD database). Another 3 missense variants affecting the same amino acid p.Arg278Pro/Leu/His have also been identified in multiple HCM patients with a similar clinical profile. Among the > 130 families carrying variants in Arg278, we have reported 9 sudden deaths in carriers and 17 sudden deaths in first/second-degree relatives without genetic testing.

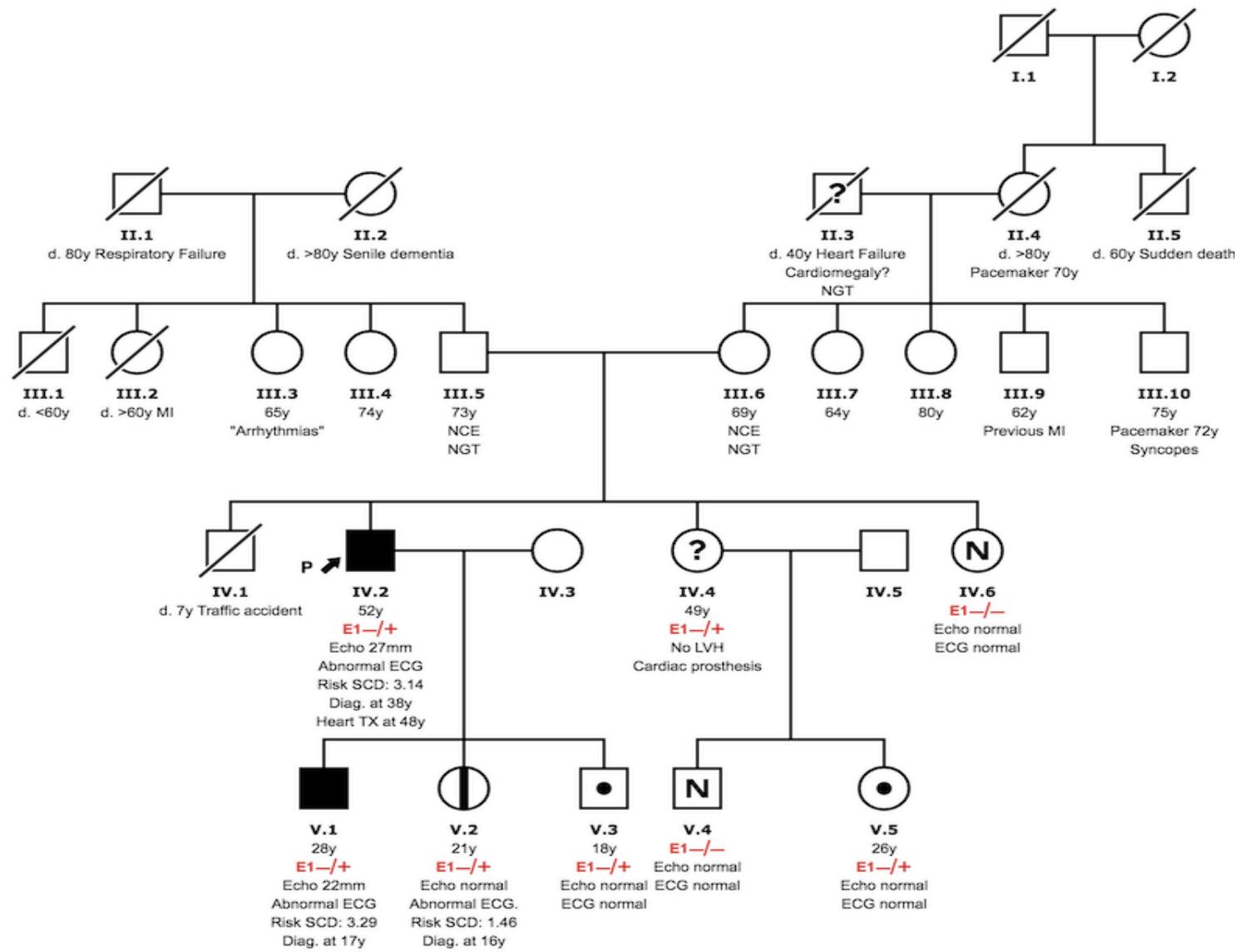
Pedigree #10

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NY		AF	FH SD	Max LVH	TV/ FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others	
							HA	III												
II.7	F	Yes (Homoz)	MYBPC3 Asp75Asn (+?)	HCM Apical	<61	68	III	-	-	-	28	+	-	-	-	-	-(63)		Holter: NSVT Echo: Restrictive pattern MRI: LA 54 mm, biventricular LGE (subepicardica l, medium mural, RV and apical). LVH medium ventricular, right ventricular and severe apical	obesity
II.6	F	Yes (Homoz)	No	HCM Apical	67	70	II	-	-	-	17	-	-	-	+ (118 at rest)	-(64)		Holter: rare isolated VEBs ECG: mild abnormal repolarization Echo: LA 46 mm, diastolic		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VEB, ventricular ectopic beats; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu; E2, other variant (see table); the index case is described in the gray line;


Comments pedigree #10:

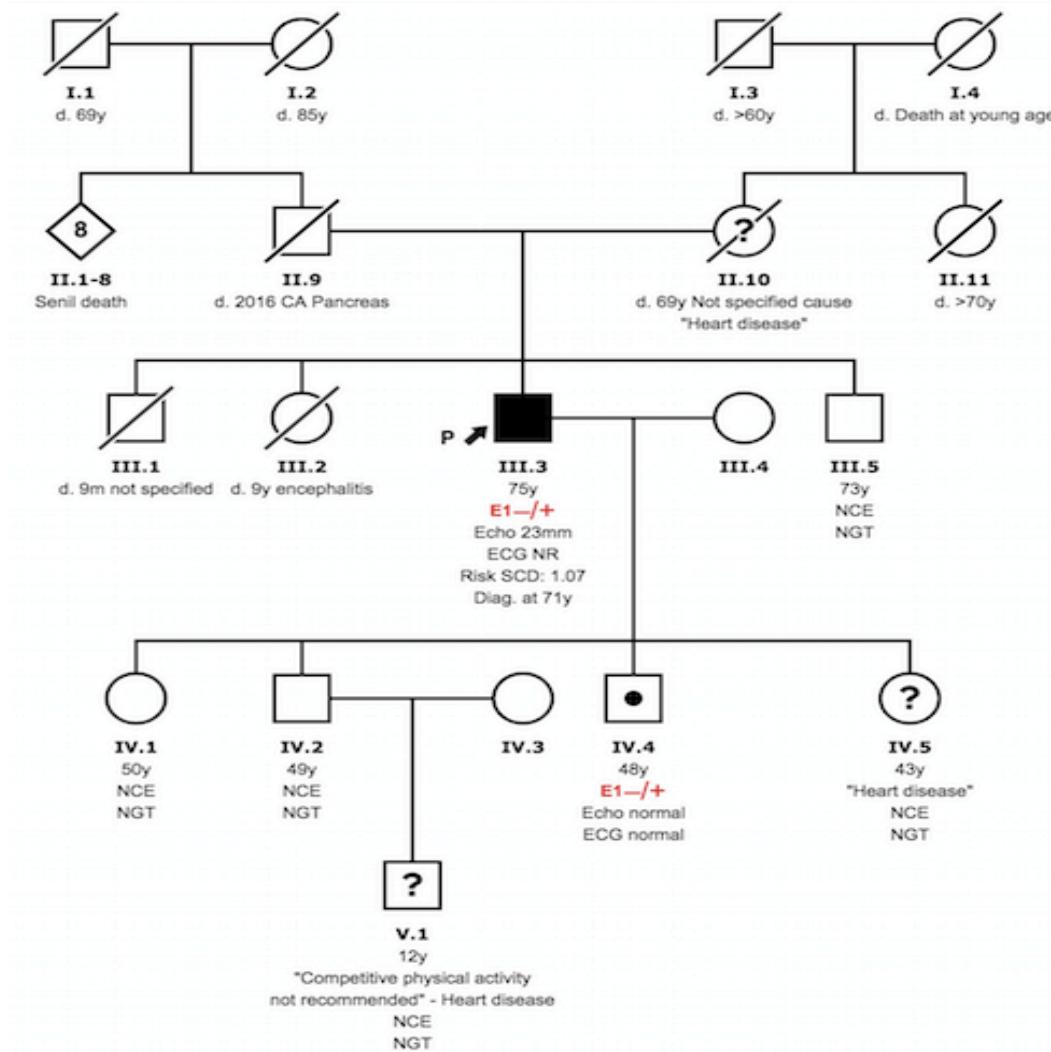
1. Complex genotypes: *TPM1* p.Arg21Leu homozygous sisters (II.7 and II.6) showed severe phenotypes although diagnosed at advanced ages. The homozygous carrier II.7 had a more marked phenotype that may be related to the presence of an additional likely pathogenic variant in *MYBPC3*. In contrast, his 42-year-old daughter (III.6), clinically unaffected, was a compound heterozygous carrier of *TPM1* p.Arg21Leu and *MYBPC3* p.Asp75Asn variants.

We consider **MYBPC3 p.Asp75Asn** to be a likely rare pathogenic variant (4 carriers in the gnomAD database). This variant has been identified in HCM index cases, and familial studies showed the presence of both affected and unaffected carriers, suggesting late/incomplete penetrance.

Pedigree #11

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

LOD SCORE: 0.17

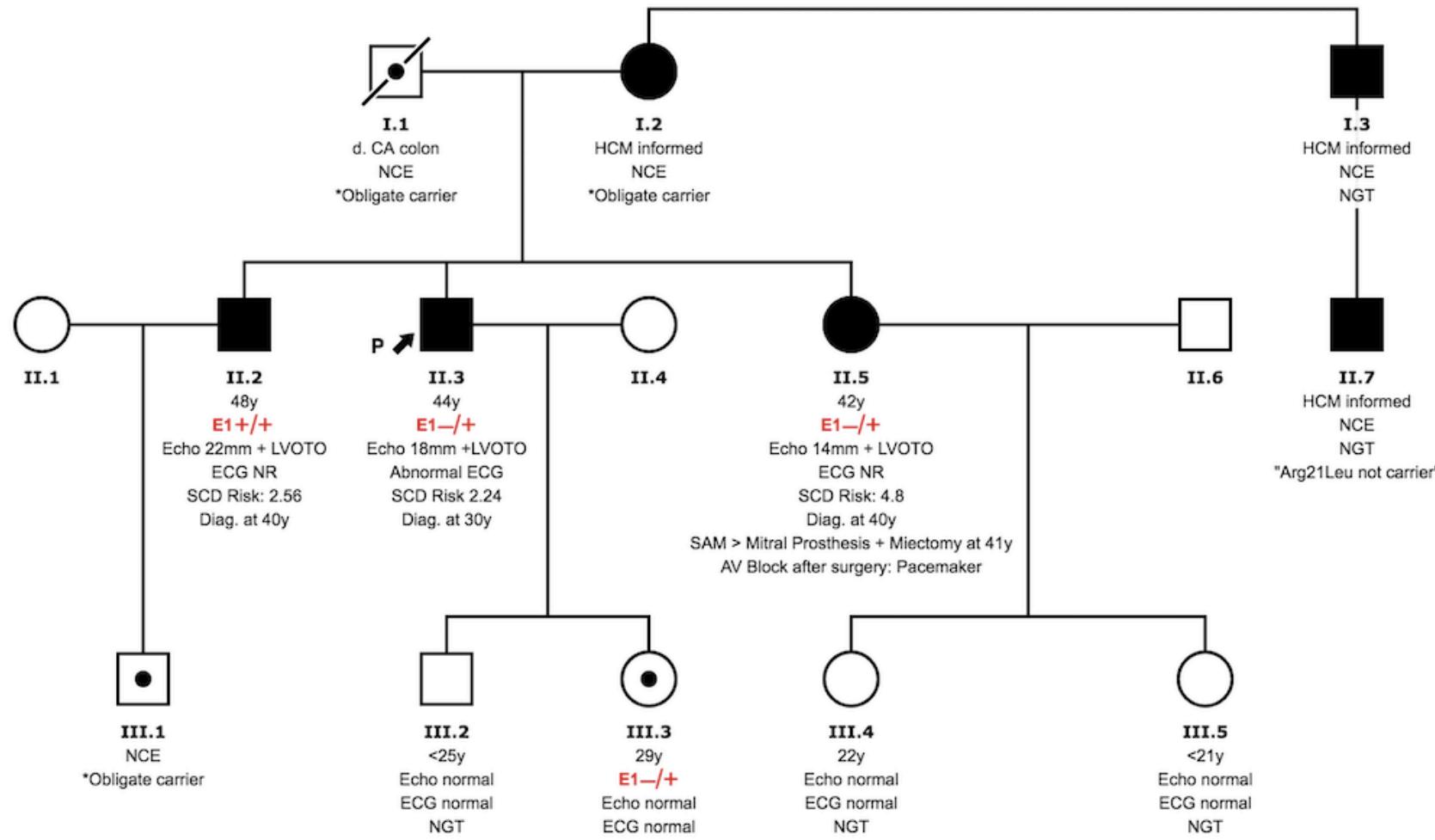

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NYHA	AF	FH SD	Max LVH	TV/ FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional	Others	
																	features		
IV. 2	M	Yes	No	HCM septal	38	52	III-IV	+	-	27	-	-	-	-	-(65)	Heart transplant at 48 y	Echo: LA 58mm, diastolic dysfunctio n II. ECG: Atrial Flutter		
IV. 4	F	Yes		?		49												Valvular cardiac disease - prosthesis	
V.1	M	Yes		HCM septal	17	28	I	-	-	22	-	-	-	-	-(72)		Echo: LA 46mm ECG: negative T waves, high QRS voltages		
V.2	F	Yes		Not affected (?)		21	I	-	-	11	-	-	-	-	-		ECG: high QRS voltage, Q waves		
V.3	M	Yes		Not affected		18													
V.5	F	Yes		Not affected		26													
II.3	M	NGT		?		40										Heart failure death at 40y			

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #12

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty pe	Age at Dx	Age , y	NY HA	AF	FH SD	Max LVH	TV/ FV	Synco pe	Abn Vasc Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
III.1	M	Yes	No	HCM septal	71	75	I	-	-	23	-	-	+	-	-(67)			
IV.4	M	Yes		Not affected		48												
II.1 0	F	NGT		Heart disease not specified		69												Death at 69 y – unspecified cause.
IV.5	F	NGT		Heart disease not specified		43												
V.1	M	NGT		Heart disease not specified		12												"Competitive physical activity not recommended"

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #13

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NYHA	AF	FH SD	Max LVH	TV/ FV	Syncop e	Abn BP Resp	LVOT O (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.3	M	Yes	No	HCM septal	30	44	I	-	-	18	-	-	+	+(60)	-(68)		Echo: LA 40mm, diastolic dysfunction I. ECG: pathologic Q wave, abnormal repolarization, high QRS voltages	
II.2	M	Yes (Homozy)		HCM septal	38	48	I	-	-	22	-	-	-	+(40)	-(70)		Echo: LA 45 mm	
II.5	M	Yes		HCM septal	40	42	III	+	-	14	-	+	-	+(75)	-(68)		Echo: elongated mitral valve leaflet, mitral insufficiency Myectomy and mitral valvular prosthesis at 41 y Pacemaker (AV block) after surgery	

III.3	F	Yes		Not affected		29													
I.1	M	Obligate carrier		NCE															
I.2	F	Obligate carrier		HCM reported – NCE		71													
III.1	M	Obligate carrier		NCE															

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; AV, atrioventricular; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. E2, other variant (see table). The index case is described in the gray line.

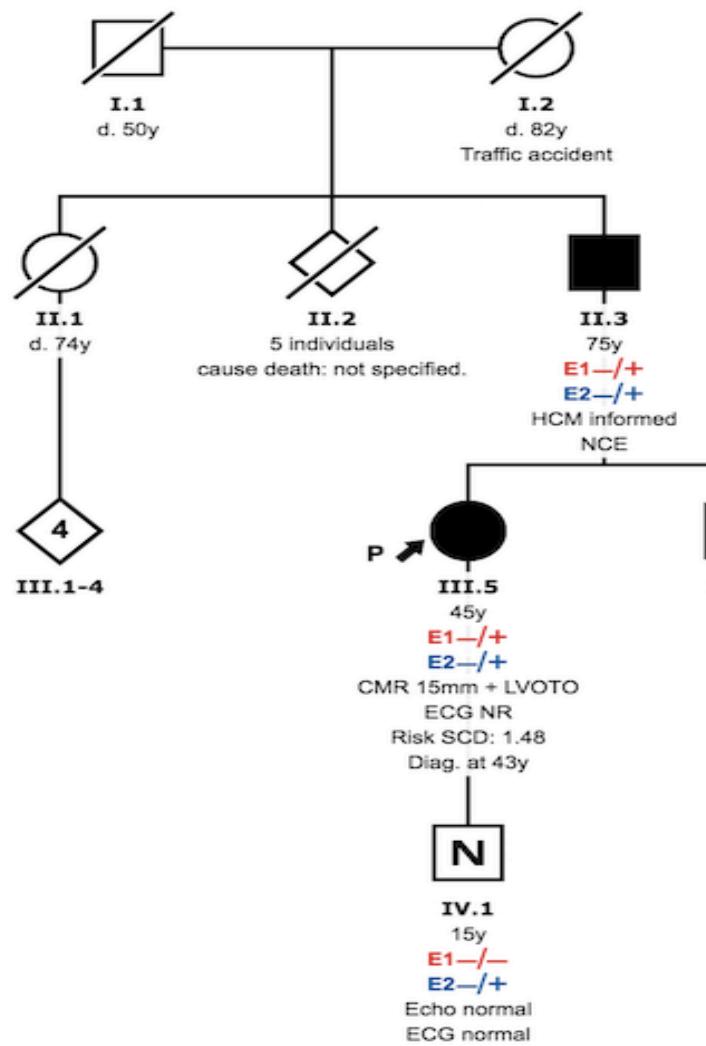
Comments pedigree #13:

There is the chance of 2 HCM-genetic etiologies in this family. Individual II.7 was studied in another center and reported as being affected by hypertrophic cardiomyopathy, but “*p.Arg21Leu noncarrier*”. No details about the genetic testing or phenotype were reported in this patient.

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NYHA	AF	FH SD	Max LVH	TV/ FV VE	Syncope	Abn Vasc Resp	LVOT O (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
	M	Yes	No	HCM apical	69	72	I	-	-	14	-	-	-	-	-(67)		Echo: LA 46 mm. MRI: LVH 11 mm septal, LGE septum inferior apical	PTCA Right coronary artery.

Pedigree #14


Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; PTCA, percutaneous transluminal coronary angioplasty; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation. The index case is described in the gray line.

SCD risk: 1.04

No pedigree was reported (no pedigree image).

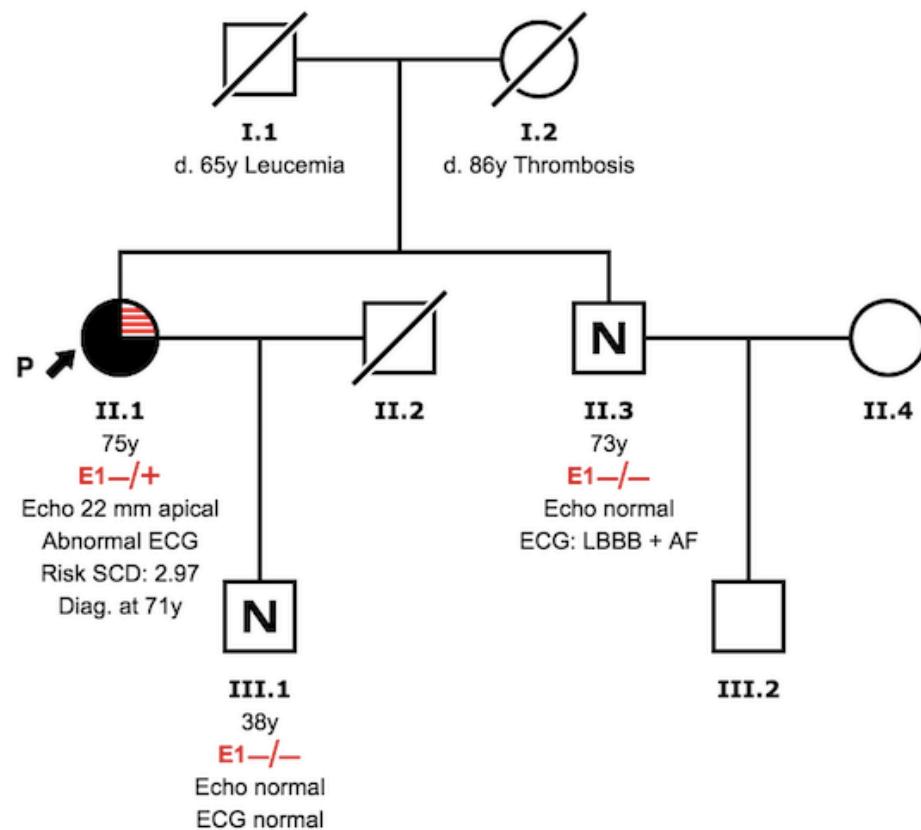
Pedigree #15

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NYHA	AF	FH SD	Max LVH	TV/ FV	Syncop	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others	
II.1	F	Yes	MYL3 Met173Val (+?)	HCM septal	43	45	II	-	-	15	-	-	-	+(>30)	-(66)		MRI: Mild intramural LGE in the hypertroph y areas and in the insertion of the RV with LV		SAH.	
II.3	M	Yes	MYL3 Met173Val (+?)	HCM reported		75				+										

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), left ventricle systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, Systemic arterial hypertension; RV, Right ventricle; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu; E2, other variant (see table). The index case is described in the gray line.


Comments pedigree #15:

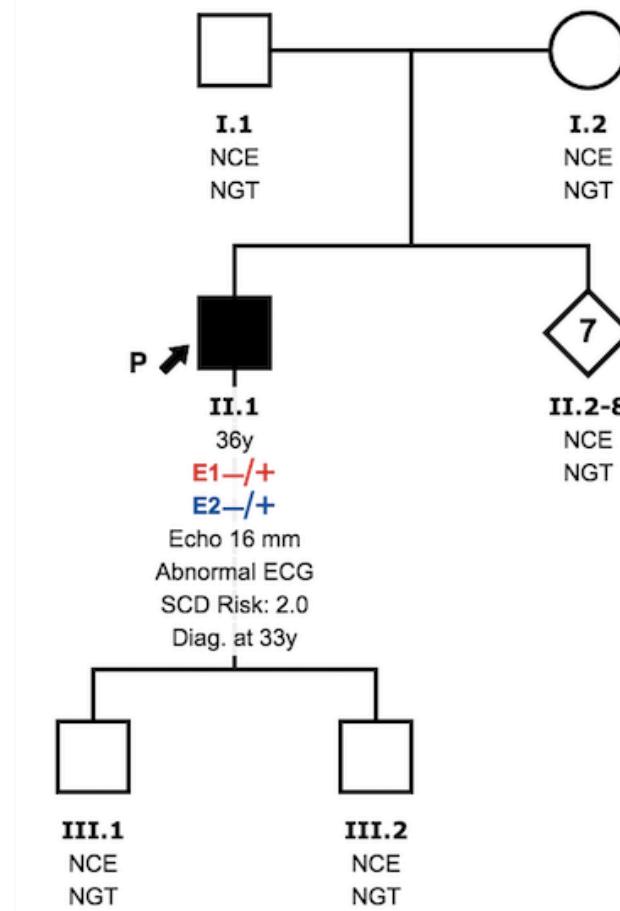
1. Complex genotypes: There are 2 carriers with complex genotype in this pedigree, but individual II.3 was studied in another center and no clinical details could be obtained.

We consider **MYL3 p.Met173Val** to be a likely pathogenic variant (+?) that has been associated with the development of hypertrophic cardiomyopathy (28 carriers from 14 families—half of them either unaffected or with unknown phenotype; consequently, familial cosegregating has not been clearly documented). It is present in a single individual from the gnomAD database (control). A functional study suggesting a damaging effect has been published. Data suggest that this variant could be associated with late disease onset and incomplete penetrance.

Pedigree #16

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Id.	Sex	TPM1 Arg21Leu	Other mutat	Pheno type	Age at Dx	Age , y	NYHA	AF	FH SD	Max LVH	TV/ FV VE	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.1	F	Yes	No	HCM apical	71	75	II	+	-	22	-	+	-	-	-(82)		Echo: LA 47 mm, moderate mitral insufficiency and mild tricuspid insufficiency. ECG: <i>in sinus</i> negative T waves, high QRS voltage. Atrial flutter/fibrillation	SAH Retinitis pigmentosa (bilateral blindness)

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, Systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

Pedigree #17

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age , y	NYHA	AF	FH SD	Max LVH	TV/ FV	Syncope	Abn BP	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.1	M	Yes	MYH7 Lys351Asn (?)	HCM septal	33	36	I	-	-	16	-	-	-	-(17)	-(84)		Echo: LA 42 mm ECG: normal	Mild SAH

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, Systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. E2, other variant (see table). The index case is described in the gray line.

Comments:

- 1. Complex genotype:** The young age at diagnosis of this carrier (II.1) could be related to the presence of the MYH7 variant; however, he did not have a severe phenotype.

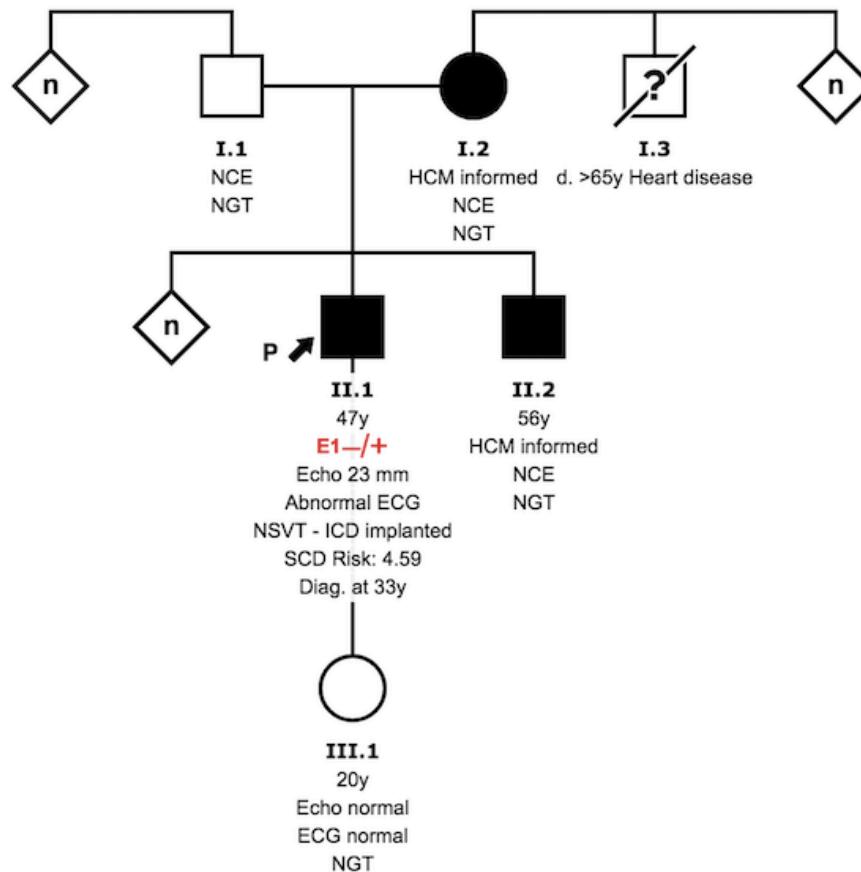
Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

We consider **MYH7 p.Lys351Asn** to be a variant of unknown clinical significance (?). It has been described to date in this single HCM-patient, and also in a single carrier from the gnomAD population (control). Two missense variants located at the same amino acid (p.Lys351Glu/Thr) have been identified in HCM cases (6 unrelated carriers).

Pedigree #18

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotyp e	Age at Dx	Age , y	NYH A	AF	FH SD	Max LVH	TV / FV	Synco pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
	M	Yes	No	HCM septal	13	32	III	-	-	51	-	+	+	+(140)	-(55)		Echo: LA 47 mm, RA enlarged, severe mitral regurgitation, SAM. Wave S <8 (tissue Doppler) ECG: High QRS voltages	Myectomy. Primary prevention-ICD implanted

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF),


systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

SCD Risk: 9.94

No pedigree was reported (no pedigree image).

Pedigree #19

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

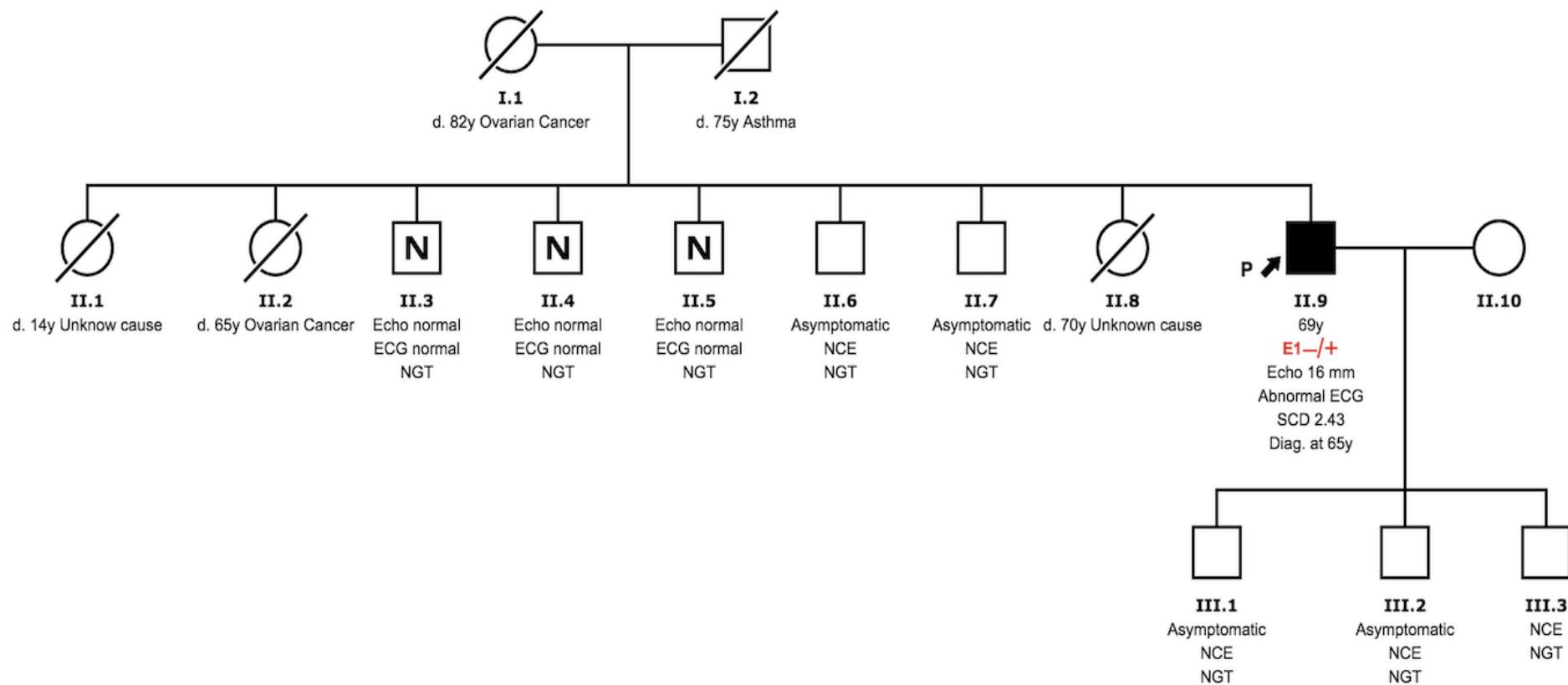
Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty pe	Age at Dx	Age , y	NY HA	AF	FHSD	Max LVH	TV / FV	Synco pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.1	M	Yes	No	HCM septal	33	47	I	-	-	23	+	No	No	-	-(>55)		ECG: First-degree AVB, high QRS voltage	Primary prevention – ICD implanted
II.2	M	NGT		HCM reported		56												
I.2	F	NGT		HCM reported		?												
I.3	M			Heart disease not specified		>65									Heart diseas e death ➤			

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #20

LOD SCORE: 0.17

Revista Española de Cardiología
*Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

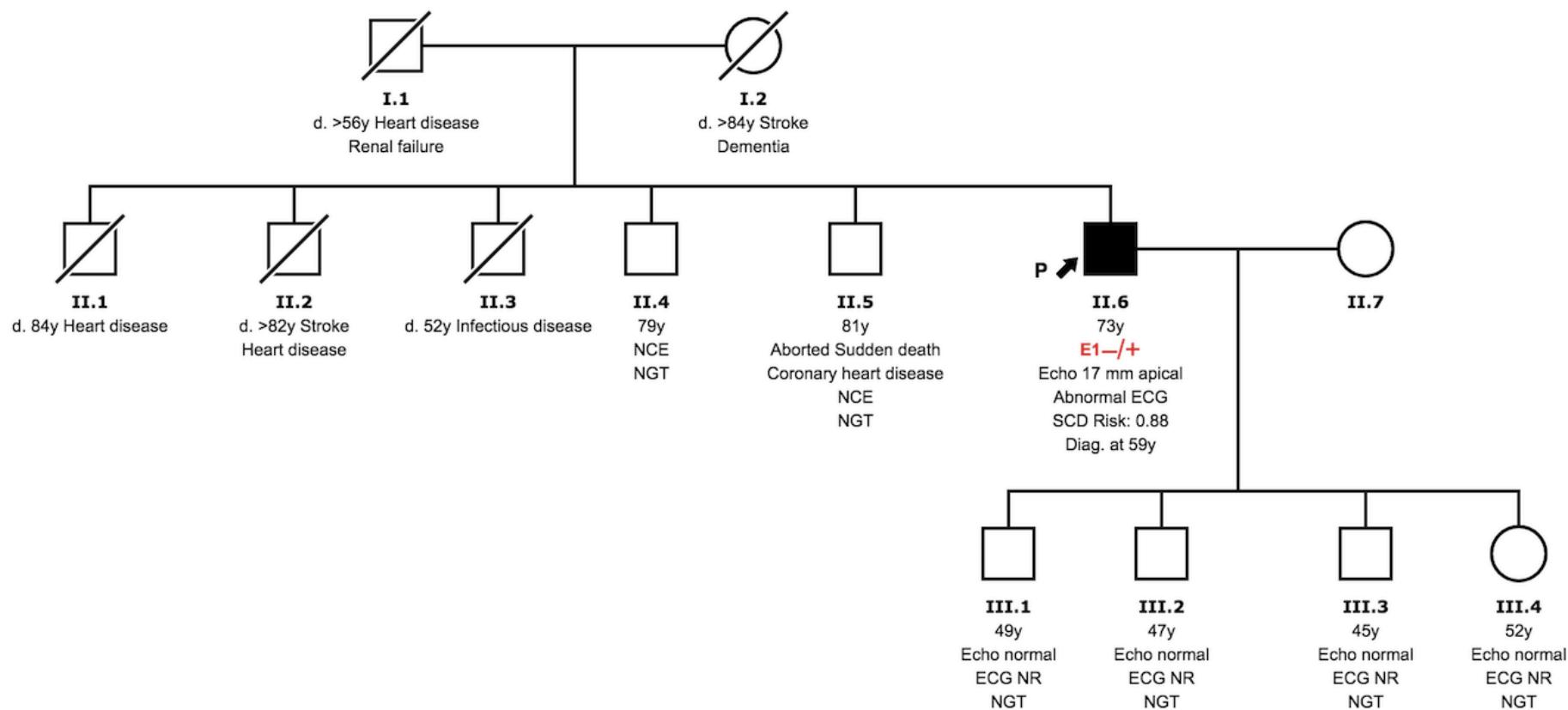

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age, y	NY HA	AF	FH SD	Max LVH	TV / FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.2	M	Yes	No	HCM septal	11	17	I	-	-	17	-	No	No	-	-(77)			
I.2	F	Yes		HCM reported	<45	>45												
II.1	M	Yes		HCM	22	23	I	-	-	-	-	No	-	-	-	ECG: High voltages		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiodefibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF),

systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #21

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

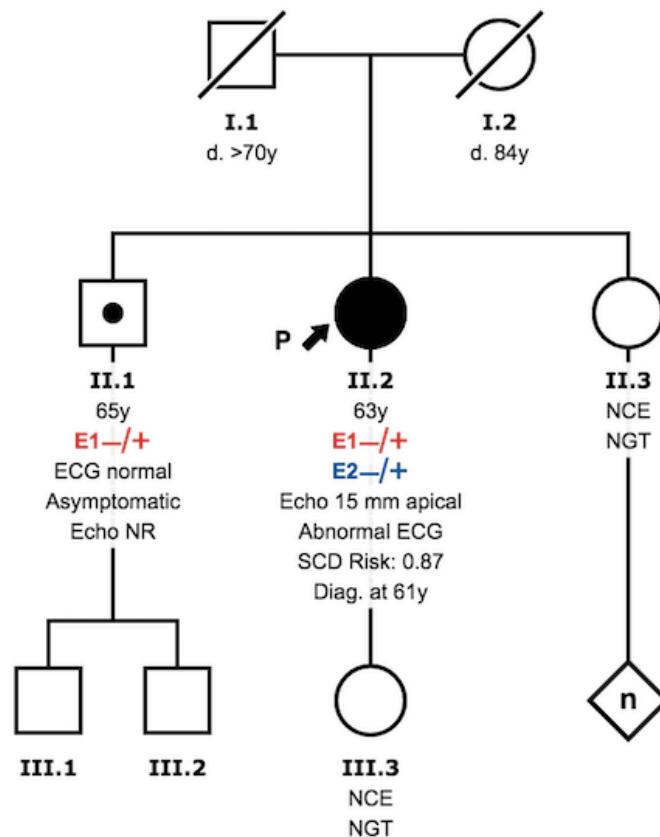

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age , y	NYH A	AF	F H SD	Max LVH	TV/ FV	Sync ope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others
II.9	M	Yes	No	HCM septal	65	69	I	-	-	16	-	No	No	-	-(72)		Echo: LA dilatation, diastolic dysfunction I. ECG: High QRS voltages, pathologic Q waves, negative T waves.		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #22

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id		Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age , y	NY HA	AF	FH SD	Max LVH	TV / FV	Syncop e	Abn BP Resp	LVOT O (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II6	F	Yes		No	HCM apical	59	73	I	-	-	17	-	-	-	-	-(77)		MRI: No late gadolinium enhancement ECG: QRS high voltages, negative T waves V ₂ -V ₆ , DI-II Holter: VEBs >200/24 h	
I.1	M					56											Heart disease death at 56 y		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); Max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VEB, Ventricular ectopic beats; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

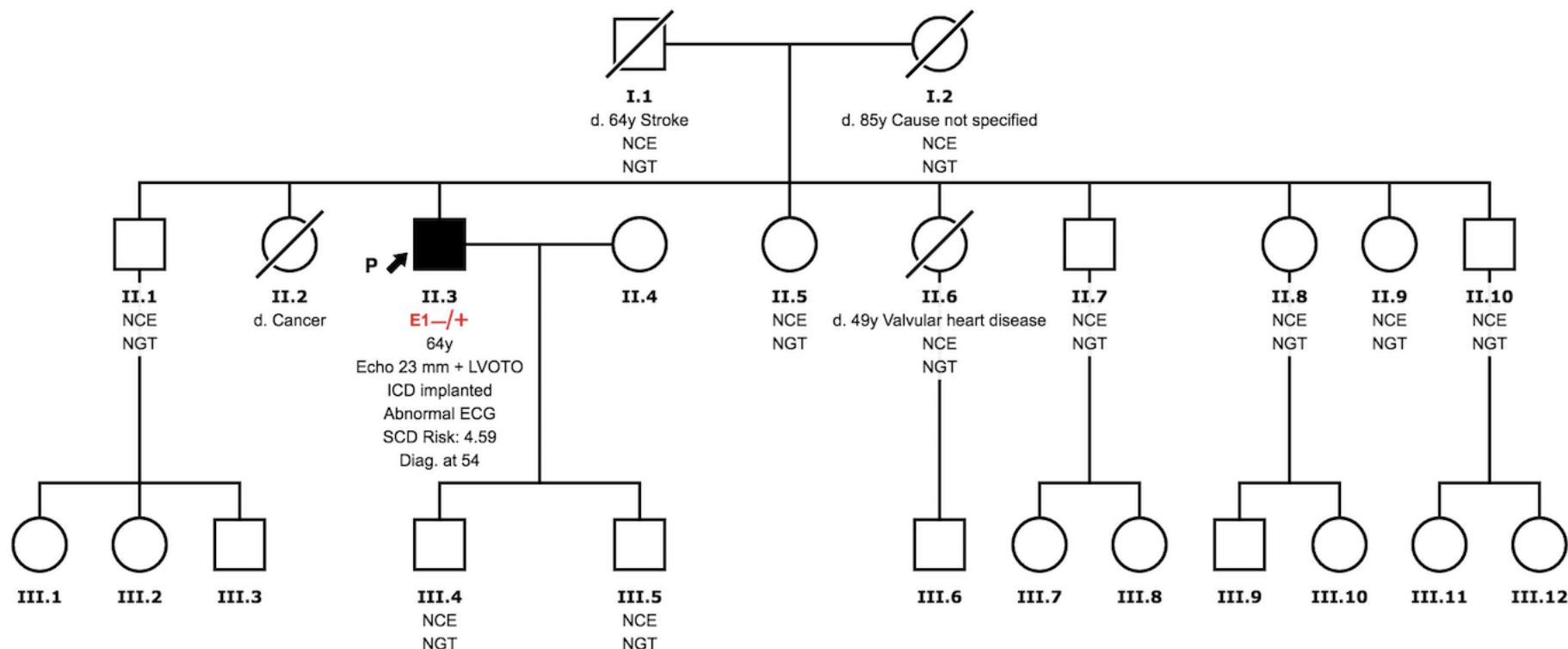
Pedigree #23

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age	Age	NYH	AF	F	Max	TV	Syncop	Abn	LVOTO	LV	Events	Additional	Others
					at Dx	, y	A		H SD	LVH	/ FV	e	BP Resp	(Peak grad)	Dysf (EF)			
II2	F	Yes	MYH7 Leu1333 Val (?)	HCM apical	61	63	I	-	-	15	-	-	-	-	-(58)		ECG: High voltages, LVH and right ventricle hypertrophy, short PR?	

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); Max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu; E2, other variant (see table). The index case is described in the gray line.

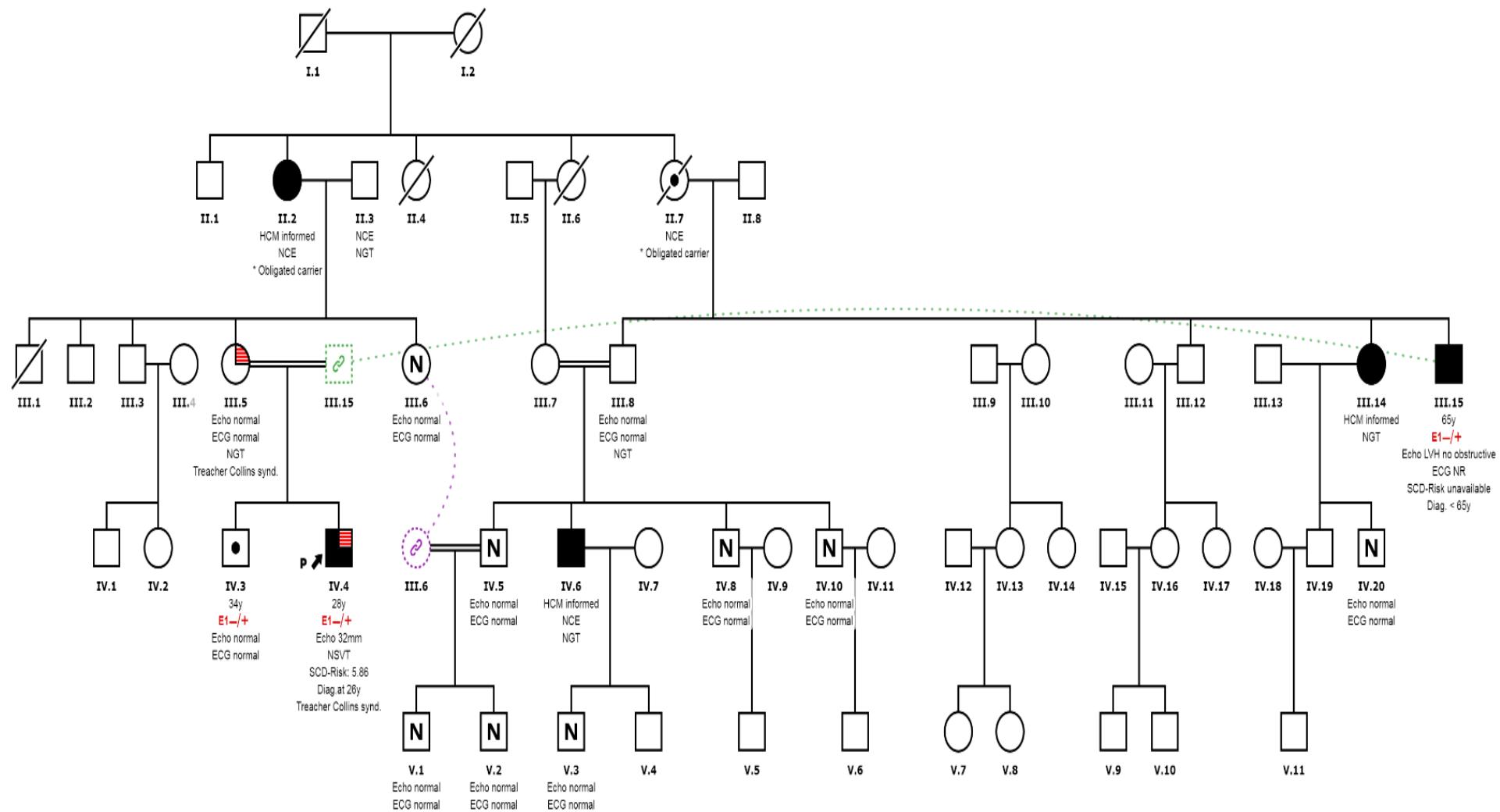

Comments:

1. Complex genotype: Patient II.2, with a mild phenotype, carried an additional *MYH7* variant of uncertain significance.

We consider ***MYH7 p.Leu1333Val*** is a variant of unknown clinical significance (?). This is the third HCM index case we have identified with the variant, and we have identified it in another index with DCM phenotype. It has been reported in 4 heterozygous individuals from the gnomAD database. These data could suggest late/incomplete penetrance for the variant, but its pathogenicity is still uncertain.

Pedigree #24

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant


Revista Española de Cardiología
*Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

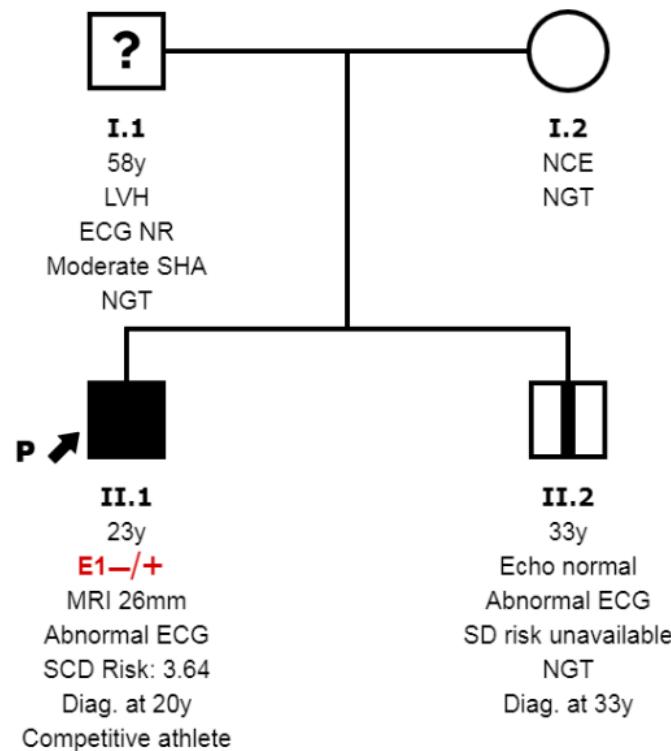
Id	Sex	TPM1 Arg21Leu	Other mutat	Phenoty pe	Age	Age	NYH	AF	FH SD	Max LVH	TV/ FV	Synco pe	Abn BP Resp	LVOT O (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
					at Dx	, y												
II.3	M	Yes	No	HCM septal	54	64	I	-	-	23	-	+	+	+(88)	-(60)			SAH severe ICD implanted
I.1	M	NGT		NCE		64										Stroke- related death at 64 y		
II.6	F	NGT		Heart disease		49										Valvular heart disease— death at 49 y		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #25

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

LOD SCORE: 0.17


Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Comments pedigree #26:

This pedigree has a carrier (II.3) with severe phenotype diagnosed at a young age, who also had a diagnosis of Treacher-Collins syndrome. Cardiac involvement has not been reported among the clinical features of this syndrome. His older brother is a clinically unaffected *TPM1* p.Arg21Leu carrier.

Pedigree #26

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at y Dx	Age, y	NYHA	AF	FHSD	Max LVH	TV/FV	Syncope	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
II.1	M	Yes	No	HCM septal	20	23	I	-	-	26	-	-	-	-	-		ECG: High voltages, abnormal repolarization. MRI: LGE 2 segments, LA 41 mm	Football practice from the age of 9 to 22 y
II.2	M	NGT		Not affected (?)		33	I	-	-	-	-	-	-	-	-		ECG: High voltages, abnormal repolarization	
I.1	M	NGT		?		58	I	-	-	+	-	-	-	-	-			Moderate SAH

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, Systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Pedigree #27

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age at Dx	Age , y	NYHA	AF	F H S D	Max LVH	TV / FV	Synco pe	Abn BP Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features	Others
	F	Yes	No	HCM septal	60	69	II	-	-	21	-	-	-	-	-		ECG: High voltages. MRI: LGE anterosept al, anterior mid-basal segment. LA 48 mm	mild SAH

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, Systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

SCD risk: 1.73

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

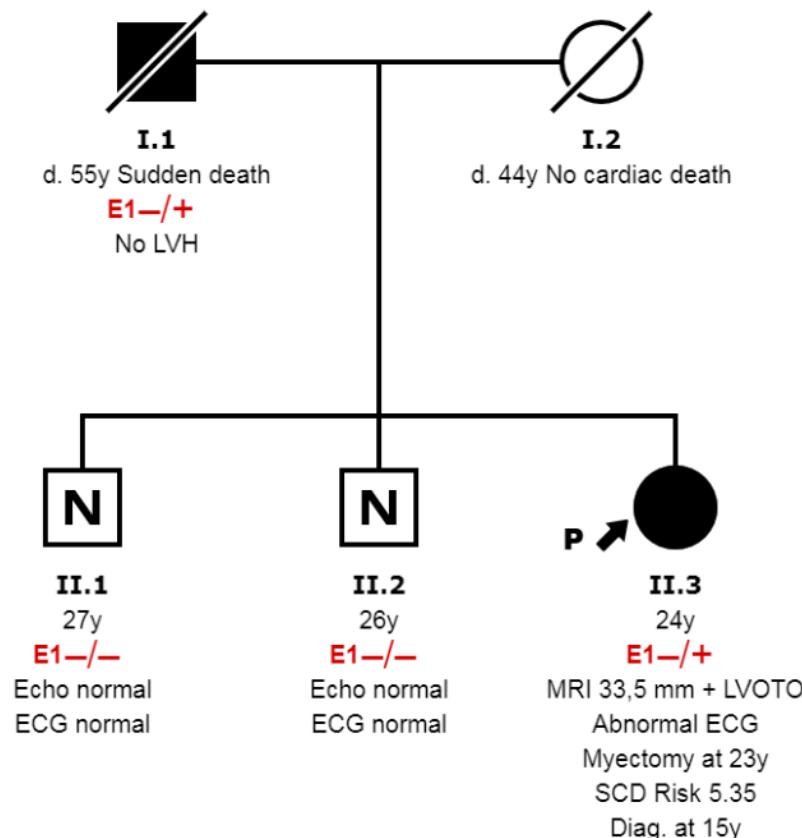
No pedigree was reported (no pedigree image).

Pedigree #28

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age	Age	NYH	AF	F	Max	TV	Syncop	Abn	LVOTO	LV	Events	Additional	Others
					at Dx	, y	A	H	LVH	/	FV	BP	Resp	(Peak grad)	Dysf	(EF)		features
	M	Yes	MYH7 Tyr582C ys (?)	HCM septal	56	57	II-III	-	-	17	-	-	-	+ (110)	-(61)		ECG: High voltages. MRI: No fibrosis, LA 45 mm, mild- moderate degenerative mitral regurgitation	

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

SCD risk: 2.39

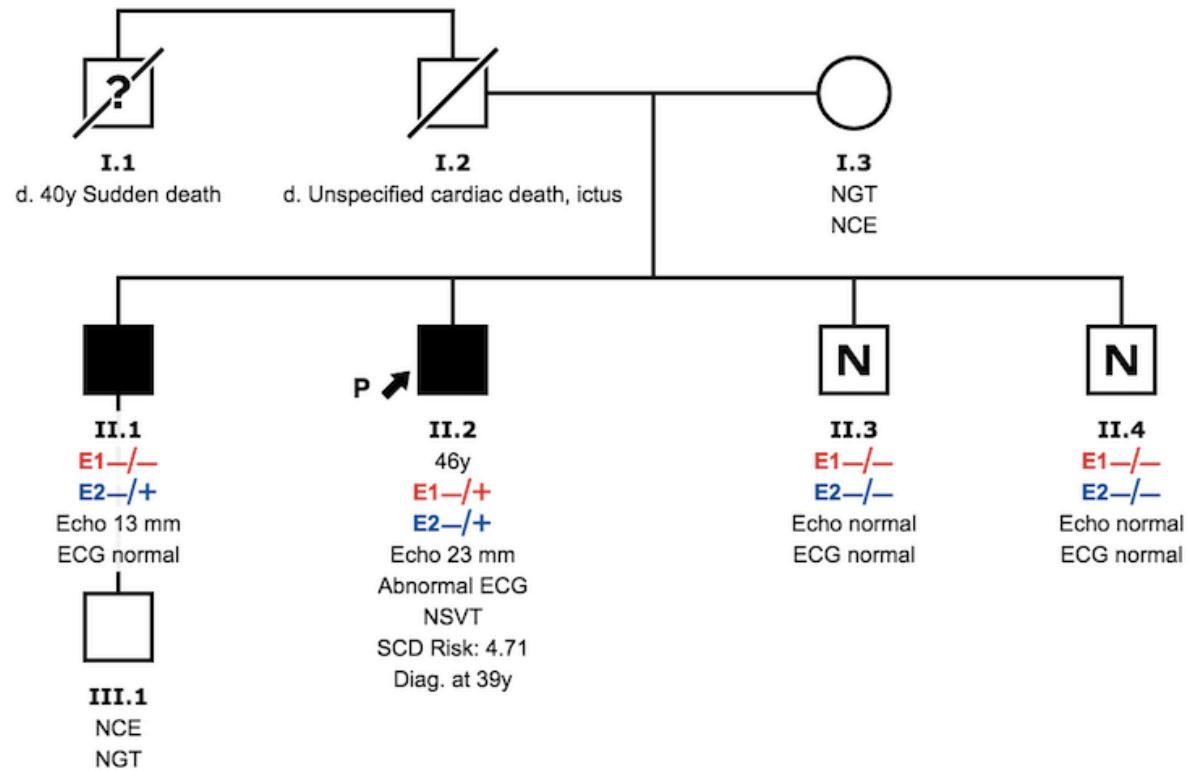

No pedigree was reported (no pedigree image).

Comments:

1. Complex genotype: Carrier of an additional variant of uncertain significance in MYH7 with mild phenotype and low SCD risk. No myocardial fibrosis in MRI.

We consider **MYH7 p.Tyr582Cys** to be a variant of unknown clinical significance (?). To date, it has been identified only in this single patient. The variant is absent in control populations. It is located within a protein domain in which many other variants have been associated with HCM.

Pedigree #29



Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age	Age	NYH	AF	FH	Max	TV	Syncop	Abn	LVOT	LV	Events	Additional features	Others
					at	, y												
II.3	F	Yes	No	HCM septal	15	24	II	-	+	33.5	-	-	-	+ (90)	-(72)		ECG: Q waves MRI: LGE in all segments, LA 32 mm	Myectomy at 23y
I.1	M	Yes	No	Sudden Death		55				No						Sudden death at 55y		Autopsy reported without LVH. Investigated with NGS panel in another center

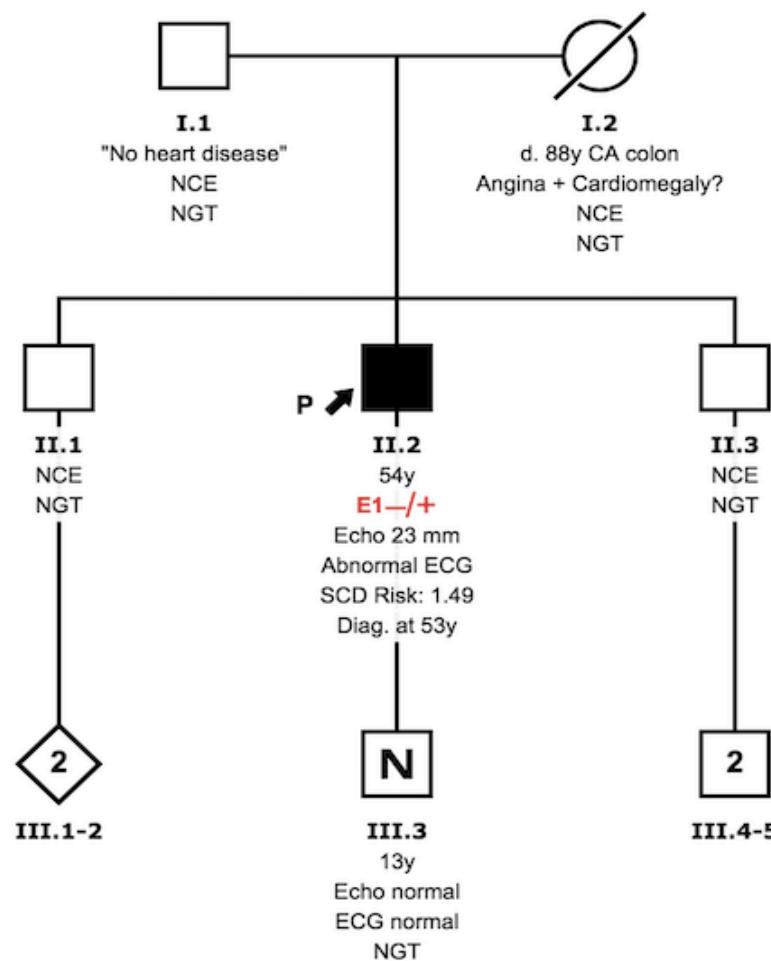
Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line.

Pedigree #30

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotyp e	Age at Dx	Age , y	NYHA	AF	F H	Max LVH	TV / FV	Syncop e	Abn Vasc Resp	LVOTO (Peak grad)	LV Dysf (EF)	Events	Additional features		Others
																	S	D	
II.2	M	Yes	TPM1 Met281 Val (+++)	HCM septal	39	46	I	-	+	23	+	-	-	- (20)	- (77)		MRI: LGE > 3 segments Holter: NSVT 3 beats		
I.1	M	?	?			40											Sudden death at 40 y		

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu; E2, other variant (see table). The index case is described in the gray line.


Comments pedigree #30:

1. Complex genotype: Two pathogenic variants in TPM1 were identified in this family. Only individual II.2 carried both variants. Compared to his brother (II.1), who carried only the *TPM1* p.Met281Val, the clinical expression of the index case was more severe and could suggest a synergic effect of the 2 variants. The paternal uncle (I.1) had a sudden death at 40 years of age; we cannot determine if he had only 1 of the family's variants or both.

We consider **TPM1 p.Met281Val** to be a rare pathogenic variant (8 individuals in gnomAD). This variant has been identified in at least 25 HCM-pedigrees (30 affected carriers and 8 unaffected relatives). Familial cosegregation has been documented in at least 1 large family. Clinical data of the carriers suggest late/incomplete penetrance (only 5 carriers were diagnosed under the age of 45 years). Another rare variant affecting the same amino acid (p.Met281Thr) has been identified in 5 HCM patients (from 4 pedigrees).

Pedigree #31

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Revista Española de Cardiología
Lamounier Junior A, et al. Genotype-phenotype correlations in hypertrophic cardiomyopathy:
a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant

Id	Sex	TPM1 Arg21Leu	Other mutat	Phenotype	Age	Age	NYH	AF	F	Max	TV	Syncop	Abn	LVOT	LV	Events	Additional features	Others
					at Dx	, y	A		H	LVH	/	e	Vasc	O	Dysf			
II.2	M	Yes	No	HCM septal	53	54	I	-	-	23	-	-	-	- (23)	- (80)		Holter: clear	Multiple sclerosis

Abn BP resp, abnormal blood pressure response on exercise; AF, atrial fibrillation; Dx, diagnosis; DCM, dilated cardiomyopathy; ECG, electrocardiogram; Echo, echocardiogram; FHSD, family history of sudden death; HCM, hypertrophic cardiomyopathy; Id, individual; ICD, implanted cardiofibrillator; LA, left atrium; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; LVOTO (peak grad), left ventricle outflow tract obstruction (gradient in mmHg); LV dysf (EF), systolic dysfunction (ejection fraction); max LVH, left ventricular hypertrophy (maximal ventricular wall thickness in mm); MRI, magnetic resonance imaging; NYHA, New York Heart Association functional class; NCE, no clinical evaluation; NGT, no genetic testing; NSVT, nonsustained ventricular tachycardia; SAH, systemic arterial hypertension; SCD, sudden cardiac death; VT/VF, ventricular tachycardia/ventricular fibrillation; E1, TPM1 p.Arg21Leu. The index case is described in the gray line;

REFERENCES

1. Ly T, Krieger I, Tolkatchev D, et al. Structural destabilization of tropomyosin induced by the cardiomyopathy-linked mutation R21H. *Protein Sci.* 2018;27:498-508.
2. Fokstuen S, Munoz A, Melacini P, et al. Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing array in clinical practice. *J Med Genet.* 2011;48:572-576.
3. Murakami K, Stewart M, nozawa K, et al. Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. *Proc Natl Acad Sci U S A.* 2008;105:7200-7205.
4. Matyushenko AM, Koubassova NA, Shchepkin DV, et al. The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α -tropomyosin on its properties and interaction with actin. *Int J Biol Macromol.* 2019 Mar 15;125:1266-1274.
5. Greenfield NJ, Fowler VM. Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. *Biophys J.* 2002;82:2580-2591.
6. Colpan M, Ly T, Grover S, et al. The cardiomyopathy-associated K15N mutation in tropomyosin alters actin filament pointed end dynamics. *Arch Biochem Biophys.* 2017;630:18-26.

Revista Española de Cardiología
Lamounier Junior A, et al. *Genotype-phenotype correlations in hypertrophic cardiomyopathy: a multicenter study in Portugal and Spain of the TPM1 p.Arg21Leu variant*

7. Walsh R, Thomson, KL, Ware J, et al. Hugh,Exome Aggregation, Consortium. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. *Genet Med.* 2017;19:192-203.
8. Zimmerman RS, Cox S, Lakdawala NK, et al. A novel custom resequencing array for dilated cardiomyopathy. *Genet Med.* 2010;12:268-278.
9. Hershberger RE, norton N, Morales A, et al. Coding Sequence Rare Variants Identified in MYBPC3, MYH6, TPM1, TNNC1 and TNNI3 from 312 Patients with Familial or Idiopathic Dilated Cardiomyopathy. *Circ Cardiovasc Genet.* 2010;3:155-156.
10. Gomez J, Reguero JR, Moris C, et al. Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing. *Circ J.* 2014;78:2963-2971.
11. Coppini R, Ho CY, Ashley E, et al. Clinical Phenotype and Outcome of Hypertrophic Cardiomyopathy Associated With Thin-Filament Gene Mutations. *J Am Coll Cardiol.* 2014;64:2589-2600.
12. Otsuka H, Arimura T, Abe T, et al. Prevalence and Distribution of Sarcomeric Gene Mutations in Japanese Patients With Familial Hypertrophic Cardiomyopathy. *FEBS J.* 2011;278:1619-1633.
13. Marian AJ, Braunwal E d. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. *Circ Res.* Author manuscript; available in PMC 2018 Sep 15. Published in final edited form as: *Circ Res.* 2017;121:749-770.