Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

SUPPLEMENTARY MATERIAL

The supplementary data contains the following items:
ENDPOINT DEFINITIONS
Death
Myocardial Infarction
Stroke
Stent Thrombosis
Bleeding Academic Research Consortium Definition for Bleeding
Table 1 of the supplementary data. Baseline characteristics according to BMI
Table 2 of the supplementary data. Angiographic data according to BMI
Table 3 of the supplementary data. Procedural characteristics according to BMI
Table 4 of the supplementary data. Diagnosis and drug therapy at discharge according to BMI
Table 5 of the supplementary data. Angiographic data according to study drug
Table 6 of the supplementary data. Procedural characteristics according to study drug
Table 7 of the supplementary data. Diagnosis and drug therapy at discharge according to study drug
Figure 1 of the supplementary data. One-year cumulative incidence of the primary endpoint for
patients with normal weight, overweight and obesity.
Figure 2 of the supplementary data. Cumulative incidence of the secondary (safety) endpoint at 1 year
for patients with normal weight, overweight, and obesity

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

ENDPOINT DEFINITIONS

Death

The primary endpoint includes death from any cause. In addition, the cause of death will be adjudicated. If autopsy has been performed autopsy reports should be solicited for determination of cause of death.

Cardiac death

Any death due to proximate cardiac cause (eg, myocardial infarction, low-output failure, fatal arrhythmia), unwitnessed death and death of unknown cause, and all procedure-related deaths, including those related to concomitant treatment, will be classified as cardiac death.

Vascular death

Death caused by noncoronary vascular causes, such as cerebrovascular disease, pulmonary embolism, ruptured aortic aneurysm, dissecting aneurysm, or other vascular diseases.

Noncardiovascular death

Any death not covered by the above definitions, such as death caused by infection, malignancy, sepsis, pulmonary causes, accident, suicide, or trauma.

All deaths are considered cardiac unless an unequivocal noncardiac cause can be established. Specifically, any unexpected death even in patients with coexisting potentially fatal noncardiac disease (eg, cancer, infection) should be classified as cardiac.

Myocardial infarction

The definition of myocardial infarction used in this study is adapted from the Third Universal Definition of Myocardial Infarction. Cardiac troponin will be used as the preferred biomarker. Creatine kinase-

2

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

myocardial band (CK-MB) and creatine kinase (CK) values will be assessed concurrently and used if troponin values are not available.

1. Spontaneous myocardial infarction, not related to percutaneous coronary intervention or coronary artery bypass grafting

Detection of a rise and/or fall in cardiac biomarkers (preferably cardiac troponin) with at least 1 value above the 99th percentile upper reference limit (URL) and with at least 1 of the following:

- symptoms of ischemia
- development of pathological Q waves in the electrocardiogram (ECG)
- new or presumed new ST-segment-T-wave changes (ST-T changes) or new left bundle branch block
- imaging evidence of new loss of viable myocardium or new regional wall motion abnormality

2. Myocardial infarction after randomization and before percutaneous coronary intervention

Recurrent symptoms of cardiac ischemia or hemodynamic instability plus 1 of the following criteria:

- new or presumed new ST-segment-elevation or new left bundle branch block distinct from the last ECG or
- in patients with normal biomarkers and not presenting with ST-segment elevation myocardial infarction on admission: detection of a rise and/or fall in cardiac biomarkers (preferably cardiac troponin) with at least 1 value above the 99th percentile URL
- if the baseline troponin values are elevated and are stable or falling, then a rise of >20% is required
- development of new pathological Q waves in the ECG distinct from the coronary territory
 identified on admission
- imaging evidence of new loss of viable myocardium or new regional wall motion abnormality

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

3. PCI-related myocardial infarction (within 48 hours after percutaneous coronary intervention)

Cardiac enzymes (troponin T or I, CK and CK-MB) will be determined on admission, 4 to 6 hours after admission [before angiography, in all patients with nonurgent percutaneous coronary intervention (PCI)] and from blood drawn from the arterial sheath in the cath lab immediately after sheath insertion and before PCI.

Biomarker course will be used for redefinition of baseline status in patients with non–ST-elevation acute coronary syndrome, ie, to differentiate unstable angina pectoris from non–ST-elevation acute myocardial infarction (NSTEMI) and to better describe biomarker course in NSTEMI patients.

Based on the 2 sets of biomarkers the baseline status will be redefined:

- If biomarkers on admission have been normal (initial diagnosis of unstable angina) and biomarkers are rising >99th percentile URL in the second sample (before catherization or from the arterial sheath) without recurrent symptoms of ischemia the initial diagnosis of unstable angina is revised to NSTEMI on admission.
- If biomarkers on admission have been elevated (diagnosis of NSTEMI) then it will be documented whether biomarker values are stable, rising or falling.

3.1. Unstable angina at baseline

In patients undergoing PCI with normal (<99th percentile URL) baseline troponin concentrations, elevations of troponin >5 x 99th percentile URL occurring within 48 hours of the procedure plus either

- evidence of prolonged ischemia (>20 minutes) as demonstrated by prolonged chest pain or
- ischemic ST-changes or new pathological Q waves, or
- angiographic evidence of a flow limiting complication, such as of loss of patency of a side branch, persistent slow-flow or no-reflow, embolization, or
- imaging evidence of new loss of viable myocardium or new regional wall motion abnormality will be defined as PCI-related myocardial infarction

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

In patients with recent symptoms (<6 hours) before admission, no second blood sample before catherization, a short interval from biomarker assessment on admission and in the cath lab and normal values in both samples it will be challenging to differentiate an ongoing myocardial infarction from post-PCI myocardial infarction.

In this case the diagnosis of myocardial infarction requires criteria as defined in section 3.3 for patients with rising biomarkers.

3.2 NSTEMI with documented stable or falling biomarkers

If the baseline troponin values are elevated and are stable or falling, then a rise of >20% is required for the diagnosis of reinfarction. In addition, either

- symptoms suggestive of myocardial ischemia or hemodynamic instability, or
- new ischemic ECG changes or new left bundle branch block (LBBB), or
- angiographic loss of patency of a major coronary artery or a side branch or persistent slowor no-flow or embolization, or
- imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality are required.

3.3. NSTEMI with rising biomarkers or ST-segment elevation myocardial infarction:

- new symptoms suggestive of myocardial ischemia or hemodynamic instability plus
- new ischemic ECG changes or new LBBB plus
- angiographic loss of patency of a major coronary artery or a side branch or persistent slow-

or

no-flow or embolization

4. Myocardial infarction related to coronary artery bypass grafting

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Myocardial infarction associated with coronary artery bypass grafting (CABG) is defined by elevation of cardiac biomarker values >10 x 99th percentile URL in patients with normal baseline Troponin values (<99th percentile URL) in addition to either

- new pathological Q waves or new LBBB, or
- angiographic documented new graft or new native coronary artery occlusion, or
- imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.

5. Criteria for prior myocardial infarction

- pathological Q waves with or without symptoms in the absense of nonischemic causes -
- imaging evidence of a region of loss of viable myocardium that is thinned and fails to contract, in the absense of a nonischemic cause
- pathological findings of a prior myocardial infarction
- medical recording that clearly states that the patient had a myocardial infarction

 Based on the Third universal definition, myocardial infarction will be classified into various types:

Type 1 Spontaneous myocardial infarction

Spontaneous myocardial infarction related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in one or more of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe coronary artery disease (CAD) but on occasion nonobstructive or no CAD.

Type 2	Myocardial	In instances of myocardial injury with necrosis
	infarction	where a condition other than CAD contributes to
	secondary to	an imbalance between myocardial oxygen supply
	an ischemic	and/or demand, eg, coronary endothelial
	imbalance	dysfunction, coronary artery spasm, coronary
		embolism, tachy-/brady-arrhythmias, anemia,
		respiratory failure, hypotension, and hypertension
		with or without left ventricular hypertrophy.
Type 3	Myocardial	Myocardial infarction resulting in death when
	infarction	biomarker values are unavailable
	resulting in	Cardiac death with symptoms suggestive of
	death when	myocardial ischemia and presumed new ischemic
	biomarker	ECG changes or new LBBB, but death occurring
	values are	before blood samples could be obtained, before
	unavailable	cardiac biomarker could rise, or in rare cases
		cardiac biomarkers were not collected.
Type 4a	Myocardial	Myocardial infarction associated with PCI is
	infarction	arbitrarily defined by elevation of cardiac troponin
	related to	(cTn) values 5 x 99th percentile URL in patients
	PCI	with normal baseline values (< 99th percentile

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

URL) or a rise of cTn values 20% if the baseline values are elevated and are stable or falling. In addition, either (i) symptoms suggestive of myocardial ischemia, or (ii) new ischemic ECG changes or new LBBB, or (iii) angiographic loss of patency of a major coronary artery or a side branch or persistent slow- or no-flow or embolization, or (iv) imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality are required.

infarction related to

Type 4b

stent

Myocardial

Myocardial infarction associated with stent thrombosis is detected by coronary angiography or autopsy in the setting of myocardial ischemia and with a rise and/ or fall of cardiac biomarkers values with at least one value above the 99th percentile URL.

Type 5 Myocardial infarction related to

CABG

Myocardial infarction associated with CABG is arbitrarily defined by elevation of cardiac biomarker values 10 x 99th percentile URL in patients with normal baseline cTn values (99th percentile URL). In addition, either (i) new

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with

acute coronary syndromes

pathological Q waves or new LBBB, or (ii)

angiographic documented new graft or new native

coronary artery occlusion, or (iii) imaging evidence

of new loss of viable myocardium or new regional

wall motion abnormality.

Stroke

Stroke is defined as the new onset of focal or global neurological deficit caused by ischemia or

hemorrhage within or around the brain and lasting for more than 24 hours or leading to death.

The diagnosis of stroke requires confirmation by computed tomography, magnetic resonance imaging,

or autopsy.

Stent thrombosis

Stent thrombosis will be classified according to the Academic Research Consortium:

Definite:

Presence of an acute coronary syndrome with angiographic or autopsy evidence of

thrombus or occlusion.

Probable:

unexplained deaths within 30 days after the procedure or acute myocardial infarction

involving the target-vessel territory without angiographic confirmation.

Possible:

all unexplained deaths occurring at least 30 days after the procedure.

9

Early: 0 to 30 days

Late: 31 to 360 days

Very late >360 days

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Bleeding Academic Research Consortium definition of bleeding

Type 0: No bleeding

Type 1: Bleeding that is not actionable and does not cause the patient to seek unscheduled

performance of studies, hospitalization, or treatment by a health care professional;

may include episodes leading to self-discontinuation of medical therapy by the patient

without consulting a health care professional

Type 2: Any overt, actionable sign of hemorrhage (eg, more bleeding than would be expected

for a clinical circumstance, including bleeding found by imaging alone) that does not

fit the criteria for type 3, 4, or 5 but does meet at least 1 of the following criteria: 51

requiring nonsurgical, medical intervention by a health care professional, a) leading to

hospitalization or increased level of care, or b) prompting evaluation

Type 3

Type 3a Overt bleeding plus hemoglobin drop of 3 to <5 g/dL (provided hemoglobin drop is

related to bleed)

Any transfusion with overt bleeding

Type 3b Overt bleeding plus hemoglobin drop ≥5 g/dL (provided hemoglobin drop is related to

bleed)

Cardiac tamponade

Bleeding requiring surgical intervention for control (excluding dental, nasal, skin or

hemorrhoid)

Bleeding requiring intravenous vasoactive agents

Type 3c Intracranial hemorrhage (does not include microbleeds or hemorrhagic

transformation, does include intraspinal)

Subcategories confirmed by autopsy or imaging or lumbar puncture

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Intraocular bleed compromising vision

Type 4: CABG-related bleeding:

Perioperative intracranial bleeding within 48 hours

Reoperation after closure of sternotomy for the purpose of controlling bleeding

Transfusion of ≥5 U whole blood or packed red blood cells within a 48-hour period

Chest tube output ≥2L within a 24-hour period

Type 5: Fatal bleeding

Type 5a Probable fatal bleeding; no autopsy or imaging confirmation but clinically suspicious

Type 5b Definite fatal bleeding; overt bleeding or autopsy or imaging confirmation

Table 1 of the supplementary data. Baseline characteristics according to BMI

Characteristic	Normal weight	Overweight	Obesity	Р
	(BMI <25 kg/m ²)	(BMI ≥25 to <30	, (BMI ≥30 kg/m²)	
	(n = 1084)	kg/m²)	(n = 1013)	
		(n = 1890)		
Age, y	67.0 ± 12.0	64.5 ± 11.8	62.1± 12.1	<.001
Sex				<.001
Female	360 (33.2)	348 (18.4)	241 (23.8)	
Male	724 (66.8)	1542 (81.6)	772 (76.2)	
Diabetes	162/1083 (15.0)	378 (20.0)	342/1012 (33.8)	<.001
Insulin-treated	49/1083 (4.5)	115 (6.1)	114/1012 (11.3)	<.001
Smoker	397/1077 (36.9)	622/1884 (33.0)	320/1009 (31.7)	.030
Hypertension	699/1082 (64.6)	1292/1887 (68.5)	804/1011 (79.5)	<.001
Hypercholesterolemia	591/1080 (54.7)	1069/1888 (56.6)	660/1011 (65.3)	<.001
Prior myocardial infarction	157/1083 (14.5)	299/1888 (15.8)	171 (16.9)	.322
Prior PCI	201/1082 (18.6)	447/1888 (23.7)	263 (26.0)	<.001
Prior CABG	54/1082 (5.0)	119 (6.3)	67 (6.6)	.233
Cardiogenic shock	26 (2.4)	30 (1.6)	8 (0.8)	.014
Systolic blood pressure, mmHg	142 ± 24.4	143 ± 24.4	145 ± 25.4	.005
Diastolic blood pressure, mmHg	81.0 ± 14.1	81.9 ± 14.0	83.0 ±	.005
Heart rate, beats/min	76.9 ± 16.6	75.7 ± 15.5	77.6 ± 15.2	.006
Body mass index, kg/m²	23.5 [22.0-24.4]	27.3 [26.1-28.4]	32.8 [31.1-35.4]	<.001
Weight < 60 kg	198 (18.3)	4 (0.2)	0	<.001
Creatinine, µmol/L	84.3 ± 29.1	88.8 ± 28.2	90.3 ± 29.9	<.001
Diagnosis at admission				.310
Unstable angina	128 (11.8)	238 (12.6)	144 (14.2)	
NSTEMI	488 (45.0)	888 (47.0)	465 (45.9)	
STEMI	468 (43.2)	764 (40.4)	404 (39.9)	
Coronary	1079 (99.5)	1885 (99.7)	1009 (99.6)	.655
angiography				
Treatment strategy				.211
PCI	904 (83.5)	1610 (85.3)	833 (82.3)	
CABG	20 (1.8)	40 (2.1)	23 (2.3)	
Conservative	159 (14.7)	237 (12.6)	156 (15.4)	

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

BMI, body mass index; CABG, coronary artery bypass grafting; NSTEMI, non–ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

Data are expressed as No. (%) or mean ± standard deviation, median [25th-75th] percentiles or counts (%).

Missing continuous data:

Normal weight group: diastolic blood pressure: 4 patients.

Overweight group: systolic blood pressure: 2 patients, diastolic blood pressure: 7 patients, heart rate:

2 patients.

Obesity group: systolic blood pressure: 1 patient, diastolic blood pressure: 3 patients.

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Table 2 of the supplementary data. Angiographic data according to BMI^a

Characteristic	Normal weight (BMI <25 kg/m²) (n = 1079)	Overweight (BMI ≥25 to <30 kg/m²) (n = 1885)	Obesity (BMI ≥30 kg/m²) (n = 1009)	P
Access site				.004
Femoral artery	705 (65.3)	1204 (63.9)	590 (58.5)	
Radial artery	368 (34.1)	676 (35.9)	411 (40.7)	
Other	6 (0.6)	5 (0.3)	8 (0.8)	
Number of diseased coronary arteries				.123
No obstructive CAD	104 (9.6)	133 (7.1)	96 (9.5)	
1-vessel disease	311 (28.8)	584 (31.0)	282 (27.9)	
2-vessel disease	290 (26.9)	507 (26.9)	271 (26.9)	
3-vessel disease	374 (34.7)	661 (35.1)	360 (35.7)	
Left ventricular ejection fraction ^b	51.2 ± 12.0	52.1 ± 11.0	51.9 ± 10.9	.145

Data are shown as counts (proportion; %) or mean ± standard deviation.

BMI, body mass index; CAD, coronary artery disease.

^aAngiographic data were not available for 5 patients with normal weight, 5 patients with overweight, and 4 patients with obesity.

^bLeft ventricular ejection fraction was not available in 67 patients with normal weight, 107 patients with overweight, and 47 patients with obesity.

Table 3 of the supplementary data. Procedural characteristics according to BMI

Characteristic	Normal weight (BMI <25 kg/m²) (n = 904)	Overweight (BMI ≥25 to <30 kg/m²) (n = 1610)	Obesity (BMI ≥30 kg/m²) (n = 833)	P
Target vessel				.013
Left main coronary artery	23 (2.5)	39 (2.4)	11 (1.32)	
LAD coronary artery	418 (46.2)	706 (43.9)	327 (39.3)	
Left circumflex	160 (17.7)	347 (21.6)	181 (21.7)	
coronary artery	, ,	, ,	, ,	
Right coronary	287 (31.7)	494 (30.7)	296 (35.5)	
artery				
Bypass graft	16 (1.8)	24 (1.5)	18 (2.2)	
Complex lesion (type B2/C)	554 (61.3)	935 (58.1)	478 (57.4)	.188
More than 1 lesion treated	325 (36.0)	558 (34.7)	282 (33.9)	.647
TIMI flow grade before the intervention				.009
0	278 (30.8)	596 (37.0)	295 (35.4)	
1	71 (7.85)	121 (7.5)	83 (10.0)	
2	204 (22.6)	344 (21.4)	185 (22.2)	
3	351 (38.8)	549 (34.1)	270 (32.4)	
TIMI flow grade after the intervention				.407
0	8 (0.9)	15 (0.9)	9 (1.1)	
1	3 (0.3)	11 (0.7)	2 (0.2)	
2	29 (3.2)	42 (2.6)	15 (1.8)	
3	864 (95.6)	1542 (95.8)	807 (96.9)	
Type of intervention	001 (33.0)	13 12 (33.0)	007 (30.37	
Drug-eluting stent	818 (90.5)	1433 (89.0)	762 (91.5)	.133
Bare-metal stent	1 (0.1)	7 (0.4)	4 (0.5)	.313
Bioresorbable	53 (5.9)	96 (6.0)	44 (5.3)	.783
vascular scaffold	J3 (J. 3)	30 (0.0)	++ (J.J)	.703
Drug-eluting	23 (2.5)	29 (1.8)	10 (1.2)	.114
balloon	23 (2.3)		10 (1.2)	
Plain balloon	26 (2.9)	54 (3.4)	22 (2.6)	.586
angioplasty				
Maximal stent	3.15 ± 0.49	3.19 ± 0.49	3.22 ± 0.52	.020
diameter, mm				
Total stented length, mm	30.7 ± 16.9	30.0 ± 16.6	31.0 ± 17.4	.298
Successful PCI	884 (97.8)	1577 (98.0)	812 (97.5)	.754

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Periprocedural antithrombotic medication				
Aspirin	806 (89.2)	1443 (89.6)	764 (91.7)	.158
Unfractionated heparin	838 (92.7)	1533 (95.2)	776 (93.2)	.018
Low molecular weight heparin	27 (3.0)	67 (4.2)	45 (5.4)	.042
Bivalirudin	79 (8.7)	117 (7.3)	70 (8.4)	.362
GPIIb/IIIa inhibitor	93 (10.3)	217 (13.5)	103 (12.4)	.066

Data are shown as counts (proportions; %) or mean ± standard deviation.

BMI, body mass index; GPIIb/IIIa, glycoprotein IIb/IIIa; LAD, left anterior descending; PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction.

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Table 4 of the supplementary data. Diagnosis and drug therapy at discharge according to BMI^a

Characteristic	Normal weight (BMI <25 kg/m²)	Overweight (BMI ≥25 to <30	Obesity (BMI ≥30 kg/m²)	Р
	(n = 1081)	kg/m ²) (n = 1885)	(n = 1013)	
Final diagnosis of acute coronary syndrome	974 (90.1)	1731 (91.8)	908 (89.6)	.097
Unstable angina	93/974 (9.6)	161/1731 (9.3)	107/908 (11.8)	
NSTEMI	426/974 (43.7)	811/1731 (46.9)	412/908 (45.4)	
STEMI	455/974 (46.7)	759/1731 (43.8)	389/908 (42.8)	
Therapy at discharge ^b				
Aspirin	995/1061 (93.8)	1774/1862 (95.3)	947/1002 (94.5)	.216
Ticagrelor	429/1061 (40.4)	768/1862 (41.2)	409/1002 (40.8)	.909
Prasugrel	423/1061 (39.9)	779/1862 (41.8)	399/1002 (39.8)	.447
Clopidogrel	65/1061 (6.1)	92/1862 (4.9)	49/1002 (4.9)	.324
Oral anticoagulant drugs	55/1061 (5.2)	73/1862 (3.9)	53/1002 (5.3)	.145
Beta blocking agents	837/1061 (78.9)	1561/1862 (83.8)	864/1002 (86.2)	<.001
ACE inhibitor/ARB	873/1061 (82.3)	1575/1862 (84.6)	879/1002 (87.7)	.003
Statin	965/1061 (91.0)	1723/1862 (92.5)	927/1002 (92.5)	.267

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction.

Data are shown as counts (proportions; %).

^a Not available for patients who withdrew consent before discharge.

^b Shown for patients discharged alive, not available for patients who withdrew consent.

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Table 5 of the supplementary data. Angiographic data according to study drug^a

Characteristic	Normal weight (BMI<25 kg/m 2) (n = 1079)			_	Overweight (BMI ≥25 to <30 kg/m²) (n = 1885)			Obesity (BMI ≥30 kg/m²) (n = 1009)		
	Ticagrelor (n = 548)	Prasugrel (n = 531)	P	Ticagrelor (n = 942)	Prasugrel (n = 943)	Р	Ticagrelor (n = 501)	Prasugrel (n = 508)	P	
Access site			.079			.447			.694	
Femoral artery	341 (62.2)	364 (68.5)		614 (65.2)	590 (62.6)		290 (57.9)	300 (59.1)		
Radial artery	203 (37.0)	165 (31.1)		325 (34.5)	351 (37.2)		208 (41.5)	203 (40.0)		
Other	4 (0.7)	2 (0.4)		3 (0.3)	2 (0.2)		3 (0.6)	5 (1.0)		
Number of diseased coronary arteries			.144			.966			.536	
No obstructive CAD	58 (10.6)	46 (8.7)		68 (7.2)	65 (6.9)		43 (8.6)	53 (10.4)		
1-vessel disease	163 (29.7)	148 (27.9)		287 (30.5)	297 (31.5)		149 (29.7)	133 (26.2)		
2-vessel disease	131 (23.9)	159 (29.9)		255 (27.1)	252 (26.7)		132 (26.3)	139 (27.4)		
3-vessel disease	196 (35.8)	178 (33.5)		332 (35.2)	329 (34.9)		177 (35.3)	183 (36.0)		
Left ventricular ejection fraction b	51.1 ± 12.1	51.3 ± 11.9	.763	51.6 ± 11.1	52.5 ± 10.8	.076	52.0 ± 10.7	51.8 ± 11.0	.762	

BMI, body mass index; CAD, coronary artery disease.

Data are shown as counts (proportion; %) or mean ± standard deviation.

^aAngiographic data were not available in 5 patients with normal weight (4 in the ticagrelor group and 1 in the prasugrel group), 5 patients with overweight (3 in the ticagrelor group and 2 in the prasugrel group), and 4 patients with obesity (2 in each group).

^bLeft ventricular ejection fraction was not available in 67 patients with normal weight (32 in the ticagrelor group and 35 in the prasugrel group), 107 patients with overweight (55 in the ticagrelor group and 52 in the prasugrel group), and 47 patients with obesity (23 in the ticagrelor group and 24 in the prasugrel group).

Table 6 of the supplementary data. Procedural characteristics according to study drug

Characteristic	Normal w (BMI <25 (n = 904)	-		Overweigh (BMI ≥25 to (n = 1610)	t o <30 kg/m²)	Obesity (BMI ≥30 kg (n = 833)	g/m²)	
	Ticagrel or (n = 453)	Prasugrel (n = 451)	Р	Ticagrelor (n = 791)	Prasugrel (n = 819)	Р	Ticagrelor (n = 421)	Prasugrel (n = 412)	Р
Target vessel			.659			.844			.754
Left main coronary artery	13 (2.9)	10 (2.2)		18 (2.3)	21 (2.6)		5 (1.2)	6 (1.5)	
LAD coronary	213	205		356	350		172	155	
artery	(47.0)	(45.5)		(45.0)	(42.7)		(40.9)	(37.6)	
Left circumflex coronary artery	85 (18.8)	75 (16.6)		166 (21.0)	181 (22.1)		93 (22.1)	88 (21.4)	
Right	135	152		241	253		141	155	
coronary artery	(29.8)	(33.7)		(30.5)	(30.9)		(33.5)	(37.6)	
Bypass graft	7 (1.5)	9 (2.0)		10 (1.3)	14 (1.7)		10 92.4)	8 (1.9)	
Complex lesion	279	275	.904	459	476	>.999	233	245	.257
(type B2/C)	(61.6)	(61.0)		(58.0)	(58.1)		(55.3)	(59.5)	
More than 1	161	164	.851	269	289	.626	137	145	.462
lesion treated	(35.5)	(36.4)		(34.0)	(35.3)		(32.5)	(35.2)	
TIMI flow grade			.647			.773			.403
before the intervention									
0	140	138		295	301		154	141	
	(30.9)	(30.6)		(37.3)	(36.8)		(36.6)	(34.2)	
1	32 (7.1)	39 (8.7)		54 (6.8)	67 (8.2)		38 (9.0)	45 (10.9)	
2	98	106		172	172		86 (20.4)	99 (24.0)	
	(21.6)	(23.5)		(21.7)	(21.0)				
3	183	168		270	279		143	127	
	(40.4)	(37.3)		(34.1)	(34.1)		(34.0)	(30.8)	
TIMI flow grade after the			.826			.206			>.99 9
intervention	2 (0.7)	E /1 1\		0 (1 1)	6 (0.7)		E /1 2\	4 (1.0)	
0	3 (0.7)	5 (1.1)		9 (1.1)	6 (0.7)		5 (1.2)	4 (1.0)	
1	1 (0.2)	2 (0.4)		7 (0.9)	4 (0.5)		1 (0.2)	1 (0.2)	
2	15 (3.3)	14 (3.1)		26 (3.3)	16 (2.0)		8 (1.9)	7 (1.7)	
3	434 (95.8)	430 (95.3)		749 (94.7)	793 (96.8)		407 (96.7)	400 (97.1)	
Type of intervention	(95.8)	(95.3)		(94.7)	(96.8)		(96.7)	(97.1)	
Drug-eluting	405	413	.318	696	737	.230	385	377	>.99
stent	(89.4)	(91.6)		(88.0)	(90.0)		(91.4)	(91.5)	9
Bare-metal stent	1 (0.2)	0 (0.0)	>.999	0 (0.0)	7 (0.9)	.016	3 (0.7)	1 (0.2)	.624

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Bioresorbable	27 (6.0)	26 (5.8)	>.999	53 (6.7)	43 (5.3)	.261	19 (4.5)	25 (6.1)	.396
vascular scaffold									
Drug-eluting	15 (3.3)	8 (1.8)	.209	18 (2.3)	11 (1.3)	.223	3 (0.7)	7 (1.7)	.219
balloon									
Plain balloon	13 (2.9)	13 (2.9)	>.999	33 (4.2)	21 (2.6)	.098	11 (2.6)	11 (2.7)	>.99
angioplasty									9
Maximal stent	3.15 ±	3.15 ±	.967	3.18 ± 0.5	3.21 ±	.152	3.23 ± 0.5	3.20 ±	.535
diameter, mm	0.5	0.5			0.5			0.5	
Total stented	29.8 ±	31.7 ±	.097	30.7 ±	29.3 ±	.087	31.9 ±	30.2 ±	.179
length, mm	15.5	18.1		17.1	16.0		17.7	17.0	
Successful PCI	448	436	.041	771	806	.247	410	402	>.99
	(98.9)	(96.7)		(97.5)	(98.4)		(97.4)	(97.6)	9
Periprocedural									
antithrombotic									
medication									
Aspirin	394	412	.044	711	732	.800	390	374	.396
	(87.0)	(91.4)		(89.9)	(89.4)		(92.6)	(90.8)	
	425	413	.242	750	783	.533	395	381	.526
Unfractionated	(93.8)	(91.6)		(94.8)	(95.6)		(93.8)	(92.5)	
heparin									
Low	17 (3.8)	10 (2.2)	.246	35 (4.4)	32 (3.9)	.693	22 (5.2)	23 (5.6)	.941
molecular									
weight heparin									
Bivalirudin	39 (8.6)	40 (8.9)	.984	53 (6.7)	64 (7.8)	.444	33 (7.8)	37 (9.0)	.639
GPIIb/IIIa	47	46 (10.2)	>.999	117	100	.149	52 (12.4)	51 (12.4)	>.99
inhibitor	(10.4)			(14.8)	(12.2)				9

BMI, body mass index; GPIIb/IIIa, glycoprotein IIb/IIIa; LAD, left anterior descending; PCI, percutaneous coronary intervention; TIMI, Thrombolysis in Myocardial Infarction.

Data are shown as counts (proportions; %) or mean ± standard deviation.

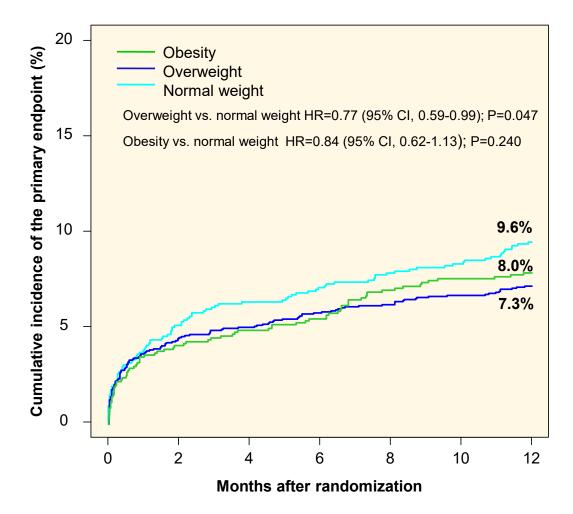
Table 7 of the supplementary data Diagnosis and drug therapy at discharge according to study drug^a

Characteristic	Normal weight (BMI <25 kg/m (n = 1081)			Overweight (BMI ≥25 to <30 kg/m²) (n = 1885)			Obesity (BMI ≥30 kg/m²) (n = 1013)		
	Ticagrelor (n = 549)	Prasugrel (n = 532)	P	Ticagrelor (n = 942)	Prasugrel (n = 943)	P	Ticagrelor (n = 503)	Prasugrel (n = 510)	P
Final diagnosis of acute coronary syndrome	497 (90.5)	477 (89.7)	.708	865 (91.8)	866 (91.8)	>.999	456 (90.7)	452 (88.6)	.339
Unstable angina	55/497 (11.1)	38/532 (8.0)		76/865 (8.8)	85/866 (9.8)		58/456 (12.7)	49/452 (10.8)	
NSTEMI	220/497 (44.3)	206/532 (43.2)		402/865 (46.5)	409/866 (47.2)		206/456 (45.2)	206/452 (45.6)	
STEMI	222/497 (44.7)	233/532 (48.8)		387/865 (44.7)	372/866 (43.0)		192/456 (42.1)	197/452 (43.6)	
Therapy at discharge ^b									
Aspirin	496/539 (92.0)	499/522 (95.6)	.023	882/825 (95.4)	892/937 (95.2)	.962	476/499 (95.4)	471/503 (93.6)	.281
Ticagrelor	425/539 (78.8)	4/522 (0.8)	<.001	760/825 (82.2)	8/937 (0.9)	<.001	407/499 (81.6)	2/503 (0.4)	<.001
Prasugrel	5/539 (0.9)	418/522 (80.1)	<.001	10/925 (1.1)	769/937 (82.1)	<.001	6/499 (1.2)	393/503 (78.1)	<.001
Prasugrel 5 mg	-	156/418 (37.3)	-	-	150/769 (19.5)	-	-	76/393 (19.3)	-
Clopidogrel	32/539 (5.9)	33/522 (6.3)	.894	36/925 (3.9)	56/937 (6.0)	.049	21/499 (4.2)	28/503 (5.6)	.395
Oral anticoagulant drugs	27/539 (5.0)	28/522 (5.4)	.903	31/925 (3.4)	42/937 (4.5)	.255	23/499 (4.6)	30/503 (6.0)	.414

Lahu S, et al. Body mass index and safety and efficacy of ticagrelor versus prasugrel in patients with acute coronary syndromes

Beta blocking agents	423/539	414/522	.797	774/925	787/937	.903	434/499	430/503	.554
	(78.5)	(79.3)		(83.7)	(84.0)		(87.0)	(85.5)	
ACE inhibitor/ARB	433/539	440/522	.108	780/925	795/937	.805	437/499	442/503	.962
	(80.3)	(84.3)		(84.3)	(84.8)		(87.6)	(87.9)	
Statin	482/539	483/522	.098	856/925	867/937	>.999	462/499	465/503	>.999
	(89.4)	(92.5)		(92.5)	(92.5)		(92.6)	(92.4)	

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; NSTEMI, non–ST-segment elevation myocardial infarction;


STEMI, ST-segment elevation myocardial infarction.

Data are shown as counts (proportions; %).

^a Not available for patients who withdrew consent before discharge,

^b Shown for patients discharged alive, not available for patients who withdrew consent.

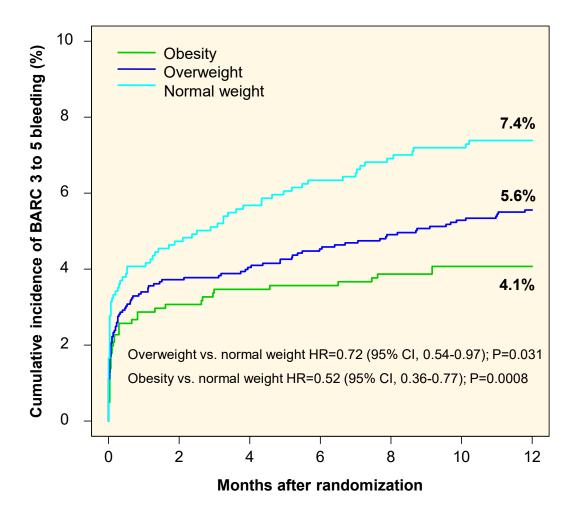

Lahu S, et al. Body mass index and efficacy and safety of ticagrelor versus prasugrel in patients with acute coronary syndromes. REC Interv Cardiol. 2021.

Figure 1 of the supplementary data. One-year cumulative incidence of the primary endpoint for patients with normal weight, overweight and obesity.

The primary endpoint was evaluated according to the intention-to-treat principle. 95%CI, 95%confidence interval; HR, hazard ratio.

Lahu S, et al. Body mass index and efficacy and safety of ticagrelor versus prasugrel in patients with acute coronary syndromes. REC Interv Cardiol. 2021.

Figure 2 of the supplementary data. Cumulative incidence of the secondary (safety) endpoint at 1 year for patients with normal weight, overweight, and obesity.

BARC, Bleeding Academic Research Consortium; 95%CI, 95%confidence interval; HR, hazard ratio.

BARC type 3 to 5 bleeding was analyzed according to the intention-to-treat principle.