APPENDIX: MICROFIT 4.0 RESULTS

Unit root tests for variable LAUS\(^1\)
The Dickey-Fuller regressions include an intercept but not a trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-1.9821</td>
<td>10507.0</td>
<td>10505.0</td>
<td>10499.1</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-1.9812</td>
<td>10508.0</td>
<td>10505.0</td>
<td>10496.3</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-1.9787</td>
<td>10509.6</td>
<td>10505.6</td>
<td>10494.0</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-1.9782</td>
<td>10510.4</td>
<td>10505.4</td>
<td>10490.8</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-1.9805</td>
<td>10511.8</td>
<td>10505.8</td>
<td>10488.3</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LAUS
The Dickey-Fuller regressions include an intercept and a linear trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-3.5582</td>
<td>10512.0</td>
<td>10509.0</td>
<td>10500.2</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-3.6896</td>
<td>10513.5</td>
<td>10509.5</td>
<td>10497.8</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-3.5441</td>
<td>10514.6</td>
<td>10509.6</td>
<td>10495.1</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-3.6629</td>
<td>10515.8</td>
<td>10509.8</td>
<td>10492.3</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-3.5237</td>
<td>10516.7</td>
<td>10509.7</td>
<td>10489.4</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

\(^1\) Here LAUS stands for the logged value for the stock market index of Australia.
Unit root tests for variable LBRZ

The Dickey-Fuller regressions include an intercept but not a trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-8.8300</td>
<td>5326.4</td>
<td>5324.4</td>
<td>5318.6</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-8.3317</td>
<td>5329.5</td>
<td>5326.5</td>
<td>5317.7</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-8.3254</td>
<td>5329.6</td>
<td>5325.6</td>
<td>5314.0</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-8.4093</td>
<td>5330.3</td>
<td>5325.3</td>
<td>5310.8</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-8.3764</td>
<td>5330.4</td>
<td>5324.4</td>
<td>5307.0</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LBRZ

The Dickey-Fuller regressions include an intercept and a linear trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-5.5433</td>
<td>5326.5</td>
<td>5323.5</td>
<td>5314.8</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-5.3141</td>
<td>5329.5</td>
<td>5325.5</td>
<td>5313.9</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-5.3436</td>
<td>5329.7</td>
<td>5324.7</td>
<td>5310.2</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-5.4242</td>
<td>5330.4</td>
<td>5324.4</td>
<td>5307.0</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-5.4427</td>
<td>5330.5</td>
<td>5323.5</td>
<td>5303.2</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

2 Here LBRZ Stands For The Logged Value For The Stock Market Index Of Brazil
Unit root tests for variable LGER

The Dickey-Fuller regressions include an intercept but not a trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-1.8057</td>
<td>9228.8</td>
<td>9226.8</td>
<td>9221.0</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-1.7976</td>
<td>9229.5</td>
<td>9226.5</td>
<td>9217.8</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-1.8141</td>
<td>9232.7</td>
<td>9228.7</td>
<td>9217.1</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-1.8203</td>
<td>9233.0</td>
<td>9228.0</td>
<td>9213.4</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-1.8076</td>
<td>9234.2</td>
<td>9228.2</td>
<td>9210.7</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LGER

The Dickey-Fuller regressions include an intercept and a linear trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>.26238</td>
<td>9229.4</td>
<td>9226.4</td>
<td>9217.7</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>.17934</td>
<td>9230.1</td>
<td>9226.1</td>
<td>9214.4</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>.35484</td>
<td>9233.4</td>
<td>9228.4</td>
<td>9213.9</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>.41238</td>
<td>9233.8</td>
<td>9227.8</td>
<td>9210.3</td>
</tr>
</tbody>
</table>

3 Here LGER Stands For The Logged Value For The Stock Market Index Of Germany
ADF(4) .30114 9234.8 9227.8 9207.5 9220.4

95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
Unit root tests for variable LHKG
The Dickey-Fuller regressions include an intercept but not a trend

2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

Test Statistic LL AIC SBC HQC
DF -2.8161 8552.6 8550.6 8544.8 8548.5
ADF(1) -2.8370 8553.4 8550.4 8541.7 8547.3
ADF(2) -2.8074 8555.0 8551.0 8539.3 8546.7
ADF(3) -2.8842 8565.4 8560.4 8545.9 8555.1
ADF(4) -2.8575 8566.3 8560.3 8542.8 8553.9

95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
Unit root tests for variable LHKG
The Dickey-Fuller regressions include an intercept and a linear trend

Here LHKG Stands For The Logged Value For The Stock Market Index Of Hong Kong
2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-2.4573</td>
<td>8552.7</td>
<td>8549.7</td>
<td>8541.0</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-2.5121</td>
<td>8553.6</td>
<td>8549.6</td>
<td>8537.9</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-2.4330</td>
<td>8555.0</td>
<td>8550.0</td>
<td>8535.5</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-2.6405</td>
<td>8565.6</td>
<td>8559.6</td>
<td>8542.2</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-2.5750</td>
<td>8566.4</td>
<td>8559.4</td>
<td>8539.0</td>
</tr>
</tbody>
</table>

95% critical value for the augmented Dickey-Fuller statistic = -3.4142

LL = Maximized log-likelihood
AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion
HQC = Hannan-Quinn Criterion

Unit root tests for variable LUSA⁵
The Dickey-Fuller regressions include an intercept but not a trend

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-1.5732</td>
<td>9921.6</td>
<td>9919.6</td>
<td>9913.8</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-1.5692</td>
<td>9921.8</td>
<td>9918.8</td>
<td>9910.0</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-1.5800</td>
<td>9923.3</td>
<td>9919.3</td>
<td>9907.6</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-1.5970</td>
<td>9925.9</td>
<td>9920.9</td>
<td>9906.4</td>
</tr>
</tbody>
</table>

⁵ Here LUSA Stands For The Logged Value For The Stock Market Index Of USA
ADF(4) -1.5986 9926.0 9920.0 9902.5 9913.6

* 95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

* 2495 observations used in the estimation of all ADF regressions.
Sample period from 6 to 2500

* Test Statistic LL AIC SBC HQC
 DF .54126 9922.4 9919.4 9910.7 9916.3
 ADF(1) .50565 9922.6 9918.6 9906.9 9914.3
 ADF(2) .63117 9924.3 9919.3 9904.7 9914.0
 ADF(3) .79862 9927.2 9921.2 9903.7 9914.8
 ADF(4) .82444 9927.3 9920.3 9899.9 9912.9

* 95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

*
Unit root tests for variable LUSA
The Dickey-Fuller regressions include an intercept and a linear trend

* 6 Here DA, DG and DU Stands for the Differenced Value for the Stock Market Return of Australia, Germany and USA Respectively.
The Dickey-Fuller regressions include an intercept but not a trend

2493 observations used in the estimation of all ADF regressions.
Sample period from 8 to 2500

Test Statistic LL AIC SBC HQC
DF -82.7576 7897.4 7895.4 7889.6 7893.3
ADF(1) -62.3213 8071.0 8068.0 8059.2 8064.8
ADF(2) -48.7560 8133.4 8129.4 8117.7 8125.2
ADF(3) -42.5793 8182.9 8177.9 8163.4 8172.6
ADF(4) -37.1496 8206.4 8200.4 8182.9 8194.0

95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable DA
The Dickey-Fuller regressions include an intercept and a linear trend

2493 observations used in the estimation of all ADF regressions.
Sample period from 8 to 2500

Test Statistic LL AIC SBC HQC
DF -82.7410 7897.4 7894.4 7885.7 7891.3
ADF(1) -62.3088 8071.0 8067.0 8055.3 8062.7
ADF(2) -48.7462 8133.4 8128.4 8113.8 8123.1
ADF(3) -42.5708 8182.9 8176.9 8159.4 8170.6
ADF(4) -37.1421 8206.4 8199.4 8179.0 8192.0

95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
Unit root tests for variable DG

The Dickey-Fuller regressions include an intercept but not a trend

* 2493 observations used in the estimation of all ADF regressions. Sample period from 8 to 2500

*
<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-82.3523</td>
<td>6608.6</td>
<td>6606.6</td>
<td>6600.8</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-60.8280</td>
<td>6762.3</td>
<td>6759.3</td>
<td>6750.6</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-51.6033</td>
<td>6869.3</td>
<td>6865.3</td>
<td>6853.6</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-43.7468</td>
<td>6919.5</td>
<td>6914.5</td>
<td>6899.9</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-37.3953</td>
<td>6940.2</td>
<td>6934.2</td>
<td>6916.8</td>
</tr>
</tbody>
</table>

*
95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable DG

The Dickey-Fuller regressions include an intercept and a linear trend

* 2493 observations used in the estimation of all ADF regressions. Sample period from 8 to 2500

*
<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-82.3360</td>
<td>6608.7</td>
<td>6605.7</td>
<td>6596.9</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-60.8161</td>
<td>6762.3</td>
<td>6758.3</td>
<td>6746.7</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-51.5930</td>
<td>6869.3</td>
<td>6864.3</td>
<td>6849.7</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-43.7377</td>
<td>6919.5</td>
<td>6913.5</td>
<td>6896.0</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-37.3875</td>
<td>6940.2</td>
<td>6933.2</td>
<td>6912.9</td>
</tr>
</tbody>
</table>

*
95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
Unit root tests for variable DU
The Dickey-Fuller regressions include an intercept but not a trend

* 2493 observations used in the estimation of all ADF regressions.
Sample period from 8 to 2500

*
<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-83.6588</td>
<td>7305.7</td>
<td>7303.7</td>
<td>7297.9</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-59.3758</td>
<td>7436.4</td>
<td>7433.4</td>
<td>7424.7</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-50.3222</td>
<td>7532.3</td>
<td>7528.3</td>
<td>7516.6</td>
</tr>
<tr>
<td>ADF(3)</td>
<td>-42.9888</td>
<td>7579.7</td>
<td>7574.7</td>
<td>7560.2</td>
</tr>
<tr>
<td>ADF(4)</td>
<td>-38.2591</td>
<td>7612.3</td>
<td>7606.3</td>
<td>7588.8</td>
</tr>
</tbody>
</table>

* 95% critical value for the augmented Dickey-Fuller statistic = -2.8632
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable DU
The Dickey-Fuller regressions include an intercept and a linear trend

* 2493 observations used in the estimation of all ADF regressions.
Sample period from 8 to 2500

*
<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-83.6420</td>
<td>7305.7</td>
<td>7302.7</td>
<td>7294.0</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-59.3639</td>
<td>7436.4</td>
<td>7433.4</td>
<td>7420.8</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-50.3119</td>
<td>7532.3</td>
<td>7527.3</td>
<td>7512.7</td>
</tr>
</tbody>
</table>
ADF(3) -42.9798 7579.7 7573.7 7556.3 7567.4
ADF(4) -38.2512 7612.3 7605.3 7584.9 7597.9

95% critical value for the augmented Dickey-Fuller statistic = -3.4142
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

TESTING FOR ARCH EFFECTS IN THE RETURN SERIES OF THE VARIABLES
Ordinary Least Squares Estimation

Dependent variable is AUS
2498 observations used for estimation from 3 to 2500

Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT .2598E-3 .1656E-3
1.5691 [.117]
AUS(-1) .029667 .020005
1.4830 [.138]

R-Squared .8804E-3 R-Bar-Squared .4801E-3
S.E. of Regression .0082722 F-stat. F(1,2496)
Mean of Dependent Variable .2679E-3 S.D. of Dependent Variable
Residual Sum of Squares .17080 Equation Log-likelihood 8434.0
Akaike Info. Criterion 8432.0 Schwarz Bayesian Criterion 8426.2
DW-statistic 1.9979 Durbin's h-statistic 3.0256[.002]

Diagnostic Tests

* Test Statistics * LM Version * F Version

* * *
* A:Serial Correlation*CHSQ(1)= 2.2311[.135]*F(1,2495)= 2.2305[.135]
* * *
* B:Functional Form *CHSQ(1)= 37.1992[.000]*F(1,2495)= 37.7161[.000]
* * *
* C:Normality *CHSQ(2)= 2442.0[.000]* Not applicable
* * *
* D:Heteroscedasticity*CHSQ(1)= 83.4620[.000]*F(1,2496)= 86.2778[.000]

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is AUS
List of the variables in the regression:
CONSTANT AUS(-1)
2498 observations used for estimation from 3 to 2500

* Lagrange Multiplier Statistic CHSQ(1)= 270.3689[.000]
F Statistic F(1,2495)= 302.8196[.000]

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is AUS
List of the variables in the regression:
CONSTANT AUS(-1)
2498 observations used for estimation from 3 to 2500

Lagrange Multiplier Statistic CHSQ(2) = 270.7294 [.000]
F Statistic F(2,2494) = 151.5755 [.000]

* *

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is AUS
List of the variables in the regression:
CONSTANT AUS(-1)
2498 observations used for estimation from 3 to 2500

* Lagrange Multiplier Statistic CHSQ(3) = 303.6546 [.000]
F Statistic F(3,2493) = 114.9942 [.000]

* Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is AUS
List of the variables in the regression:
CONSTANT AUS(-1)
2498 observations used for estimation from 3 to 2500

* Lagrange Multiplier Statistic CHSQ(4) = 304.5221 [.000]
F Statistic F(4,2492) = 86.4915 [.000]

Ordinary Least Squares Estimation

* Dependent variable is GER
2498 observations used for estimation from 3 to 2500

* Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT .3342E-3 .2761E-3 1.2102 [.226]
GER(-1) .024718 .020022
1.2345 [.217]

* R-Squared .6102E-3 R-Bar-Squared .2098E-3
S.E. of Regression .013796 F-stat. F(1,2496) 1.5241 [.217]
Mean of Dependent Variable .3428E-3 S.D. of Dependent Variable .013797
Residual Sum of Squares .47506 Equation Log-likelihood 7156.4 Akaike Info. Criterion 7154.4 Schwarz Bayesian Criterion 7148.5 DW-statistic 1.9950 Durbin's h-statistic *NONE*

Diagnostic Tests

* Test Statistics * LM Version * F Version

A:Serial Correlation*CHSQ(1)= 7.7303[.005]*F(1,2495)= 7.7450[.005]
B:Functional Form *CHSQ(1)= 1.4450[.229]*F(1,2495)= 1.4441[.230]
C:Normality *CHSQ(2)= 1279.7[.000] Not applicable
D:Heteroscedasticity*CHSQ(1)= 14.8694[.000]*F(1,2496)= 14.9465[.000]

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared fitted values

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is GER
List of the variables in the regression:
CONSTANT GER(-1)
2498 observations used for estimation from 3 to 2500

Lagrange Multiplier Statistic *CHSQ(1)= 105.4285[.000]
F Statistic *F(1,2495)= 109.9420[.000]
Lagrange Multiplier Statistic \ CHSQ(2)= 204.4210[.000]
F Statistic \ F(2,2494)= 111.1420[.000]

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

Dependent variable is GER
List of the variables in the regression:
CONSTANT GER(-1)
2498 observations used for estimation from 3 to 2500

Lagrange Multiplier Statistic \ CHSQ(3)= 307.3997[.000]
F Statistic \ F(3,2493)= 116.6115[.000]

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

Dependent variable is GER
List of the variables in the regression:
CONSTANT GER(-1)
2498 observations used for estimation from 3 to 2500

Lagrange Multiplier Statistic \ CHSQ(4)= 341.5369[.000]
F Statistic \ F(4,2492)= 98.6697[.000]

Ordinary Least Squares Estimation

Dependent variable is USA
2498 observations used for estimation from 3 to 2500

Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT .2801E-3 .2092E-3
USA(-1) .012369 .020048

R-Squared .1525E-3 R-Bar-Squared -.2481E-3
S.E. of Regression .010450 F-stat. F(1,2496)
Mean of Dependent Variable .2838E-3 S.D. of Dependent Variable
 .010449
Residual Sum of Squares .27258 Equation Log-likelihood
7850.2
Akaike Info. Criterion 7848.2 Schwarz Bayesian Criterion
7842.4
DW-statistic 1.9957 Durbin's h-statistic
NONE

* Diagnostic Tests

*
Test Statistics LM Version F Version

*
A:Serial Correlation
CHSQ(1)= 2.7633 [.096] F(1,2495)= 2.7630 [.097]
*
B:Functional Form
CHSQ(1)= 12.4878 [.000] F(1,2495)= 12.5354 [.000]
*
C:Normality
CHSQ(2)= 2159.1 [.000] Not applicable
*
D:Heteroscedasticity
CHSQ(1)= .52058 [.471] F(1,2496)= .52027 [.471]

* A: Lagrange multiplier test of residual serial correlation
B: Ramsey's RESET test using the square of the fitted values
C: Based on a test of skewness and kurtosis of residuals
D: Based on the regression of squared residuals on squared fitted values

Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is USA
List of the variables in the regression:
CONSTANT USA(-1)
2498 observations used for estimation from 3 to 2500

*Lagrange Multiplier Statistic
CHSQ(1)= 101.9001 [.000]
F Statistic
F(1,2495)= 106.1061 [.000]

*
Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

* Dependent variable is USA
List of the variables in the regression:
CONSTANT USA(-1)
2498 observations used for estimation from 3 to 2500

*Lagrange Multiplier Statistic
CHSQ(2)= 142.8360 [.000]
F Statistic
F(2,2494)= 75.6281 [.000]
Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)

Preliminary Statistics

Estimated Correlation Matrix of Variables
Variable AUS

<table>
<thead>
<tr>
<th>Order</th>
<th>Autocorrelation Coefficient</th>
<th>Standard Error</th>
<th>Box-Pierce Statistic</th>
<th>Ljung-Box Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-.036143</td>
<td>.020022</td>
<td>5.4637 [.065]</td>
<td>5.4716 [.065]</td>
</tr>
<tr>
<td>3</td>
<td>.021780</td>
<td>.020048</td>
<td>6.6491 [.084]</td>
<td>6.6593 [.084]</td>
</tr>
<tr>
<td>4</td>
<td>-.030865</td>
<td>.020057</td>
<td>9.0298 [.060]</td>
<td>9.0457 [.060]</td>
</tr>
<tr>
<td>5</td>
<td>-.016734</td>
<td>.020076</td>
<td>9.7296 [.083]</td>
<td>9.7475 [.083]</td>
</tr>
<tr>
<td>6</td>
<td>-.045956</td>
<td>.020082</td>
<td>15.0073 [.020]</td>
<td>15.0422 [.020]</td>
</tr>
<tr>
<td>7</td>
<td>-.026034</td>
<td>.020124</td>
<td>16.7011 [.019]</td>
<td>16.7421 [.019]</td>
</tr>
<tr>
<td>8</td>
<td>-.0018167</td>
<td>.020137</td>
<td>16.7157 [.053]</td>
<td>16.7568 [.053]</td>
</tr>
<tr>
<td>9</td>
<td>-.0015962</td>
<td>.020137</td>
<td>16.7401 [.080]</td>
<td>16.7813 [.079]</td>
</tr>
<tr>
<td>10</td>
<td>-.017362</td>
<td>.020138</td>
<td>17.4934 [.094]</td>
<td>17.5385 [.093]</td>
</tr>
<tr>
<td>11</td>
<td>-.045956</td>
<td>.020137</td>
<td>22.0920 [.153]</td>
<td>22.1316 [.152]</td>
</tr>
<tr>
<td>12</td>
<td>-.061024</td>
<td>.020137</td>
<td>25.2482 [.153]</td>
<td>25.3495 [.149]</td>
</tr>
<tr>
<td>13</td>
<td>.054749</td>
<td>.020180</td>
<td>29.5827 [.000]</td>
<td>29.6494 [.000]</td>
</tr>
<tr>
<td>14</td>
<td>.064060</td>
<td>.020239</td>
<td>39.8377 [.000]</td>
<td>39.9455 [.000]</td>
</tr>
<tr>
<td>15</td>
<td>.075849</td>
<td>.020004</td>
<td>14.3770 [.000]</td>
<td>14.3943 [.000]</td>
</tr>
<tr>
<td>16</td>
<td>.019668</td>
<td>.020119</td>
<td>15.3437 [.000]</td>
<td>15.3625 [.000]</td>
</tr>
<tr>
<td>17</td>
<td>.0053388</td>
<td>.020126</td>
<td>15.4149 [.001]</td>
<td>15.4339 [.001]</td>
</tr>
<tr>
<td>18</td>
<td>.017523</td>
<td>.020127</td>
<td>16.1823 [.003]</td>
<td>16.2031 [.003]</td>
</tr>
<tr>
<td>20</td>
<td>-.016517</td>
<td>.020200</td>
<td>25.2482 [.153]</td>
<td>25.3495 [.149]</td>
</tr>
<tr>
<td>22</td>
<td>.064060</td>
<td>.020209</td>
<td>25.8727 [.257]</td>
<td>25.9797 [.253]</td>
</tr>
</tbody>
</table>

Variable BRZ

<table>
<thead>
<tr>
<th>Order</th>
<th>Autocorrelation Coefficient</th>
<th>Standard Error</th>
<th>Box-Pierce Statistic</th>
<th>Ljung-Box Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.075849</td>
<td>.020004</td>
<td>14.3770 [.000]</td>
<td>14.3943 [.000]</td>
</tr>
<tr>
<td>2</td>
<td>.019668</td>
<td>.020119</td>
<td>15.3437 [.000]</td>
<td>15.3625 [.000]</td>
</tr>
<tr>
<td>3</td>
<td>.0053388</td>
<td>.020126</td>
<td>15.4149 [.001]</td>
<td>15.4339 [.001]</td>
</tr>
<tr>
<td>4</td>
<td>.017523</td>
<td>.020127</td>
<td>16.1823 [.003]</td>
<td>16.2031 [.003]</td>
</tr>
<tr>
<td>5</td>
<td>.038696</td>
<td>.020170</td>
<td>24.5665 [.137]</td>
<td>24.6620 [.135]</td>
</tr>
<tr>
<td>6</td>
<td>-.016517</td>
<td>.020200</td>
<td>25.2482 [.153]</td>
<td>25.3495 [.149]</td>
</tr>
<tr>
<td>7</td>
<td>.0073612</td>
<td>.020205</td>
<td>25.3836 [.187]</td>
<td>25.4861 [.183]</td>
</tr>
<tr>
<td>8</td>
<td>.064060</td>
<td>.020209</td>
<td>25.8727 [.257]</td>
<td>25.9797 [.253]</td>
</tr>
<tr>
<td></td>
<td>Autocorrelation</td>
<td>Standard Error</td>
<td>Box-Pierce Statistic</td>
<td>Ljung-Box Statistic</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>19</td>
<td>.070926</td>
<td>.020799</td>
<td>113.8717</td>
<td>114.4292</td>
</tr>
<tr>
<td>20</td>
<td>.051473</td>
<td>.020896</td>
<td>120.4928</td>
<td>121.1089</td>
</tr>
<tr>
<td>21</td>
<td>.039184</td>
<td>.020946</td>
<td>124.3296</td>
<td>124.9814</td>
</tr>
<tr>
<td>22</td>
<td>.036629</td>
<td>.020976</td>
<td>127.6825</td>
<td>128.3668</td>
</tr>
<tr>
<td>23</td>
<td>.060004</td>
<td>.021001</td>
<td>136.6801</td>
<td>137.4552</td>
</tr>
<tr>
<td>24</td>
<td>.038547</td>
<td>.021070</td>
<td>140.3933</td>
<td>141.2074</td>
</tr>
</tbody>
</table>

Variable GER

Sample from 2 to 2500

<table>
<thead>
<tr>
<th></th>
<th>Autocorrelation</th>
<th>Standard Error</th>
<th>Box-Pierce Statistic</th>
<th>Ljung-Box Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.024683</td>
<td>.020004</td>
<td>1.5225</td>
<td>1.5244</td>
</tr>
<tr>
<td>2</td>
<td>-.049850</td>
<td>.020016</td>
<td>7.7325</td>
<td>7.7443</td>
</tr>
<tr>
<td>3</td>
<td>-.016910</td>
<td>.020066</td>
<td>8.4471</td>
<td>8.4603</td>
</tr>
<tr>
<td>4</td>
<td>.032463</td>
<td>.020072</td>
<td>11.0806</td>
<td>11.1001</td>
</tr>
<tr>
<td>5</td>
<td>.0027159</td>
<td>.020093</td>
<td>11.0990</td>
<td>11.1186</td>
</tr>
<tr>
<td>6</td>
<td>-.046398</td>
<td>.020135</td>
<td>17.0338</td>
<td>17.0727</td>
</tr>
<tr>
<td>7</td>
<td>.049088</td>
<td>.020140</td>
<td>23.0554</td>
<td>23.1185</td>
</tr>
<tr>
<td>8</td>
<td>.0014232</td>
<td>.020179</td>
<td>23.0605</td>
<td>23.1235</td>
</tr>
<tr>
<td>9</td>
<td>-.0021763</td>
<td>.020188</td>
<td>23.0723</td>
<td>23.1354</td>
</tr>
<tr>
<td>10</td>
<td>-.010570</td>
<td>.020190</td>
<td>23.3515</td>
<td>23.4161</td>
</tr>
<tr>
<td>11</td>
<td>-.010161</td>
<td>.020192</td>
<td>23.6095</td>
<td>23.6756</td>
</tr>
<tr>
<td>12</td>
<td>-.0012838</td>
<td>.020228</td>
<td>23.6136</td>
<td>23.6797</td>
</tr>
<tr>
<td>13</td>
<td>-.058109</td>
<td>.020259</td>
<td>35.4996</td>
<td>35.6436</td>
</tr>
<tr>
<td>14</td>
<td>.037144</td>
<td>.020286</td>
<td>35.6874</td>
<td>35.8327</td>
</tr>
<tr>
<td>15</td>
<td>.0086674</td>
<td>.020288</td>
<td>37.2327</td>
<td>37.3899</td>
</tr>
<tr>
<td>16</td>
<td>-.024867</td>
<td>.020300</td>
<td>38.1423</td>
<td>38.3068</td>
</tr>
<tr>
<td>17</td>
<td>-.019079</td>
<td>.020307</td>
<td>38.2652</td>
<td>38.4307</td>
</tr>
<tr>
<td>18</td>
<td>-.0070114</td>
<td>.020308</td>
<td>41.2111</td>
<td>41.4028</td>
</tr>
<tr>
<td>19</td>
<td>.034334</td>
<td>.020311</td>
<td>44.9506</td>
<td>45.1770</td>
</tr>
<tr>
<td>20</td>
<td>-.045409</td>
<td>.020361</td>
<td>50.1036</td>
<td>50.3799</td>
</tr>
<tr>
<td>21</td>
<td>.010334</td>
<td>.020401</td>
<td>50.3705</td>
<td>50.6495</td>
</tr>
<tr>
<td>22</td>
<td>.016397</td>
<td>.020403</td>
<td>51.0423</td>
<td>51.3284</td>
</tr>
</tbody>
</table>

Variable HKG

Sample from 2 to 2500

<table>
<thead>
<tr>
<th></th>
<th>Autocorrelation</th>
<th>Standard Error</th>
<th>Box-Pierce Statistic</th>
<th>Ljung-Box Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.024293</td>
<td>.020004</td>
<td>1.4747</td>
<td>1.4765</td>
</tr>
<tr>
<td>2</td>
<td>-.035316</td>
<td>.020016</td>
<td>4.5915</td>
<td>4.5983</td>
</tr>
<tr>
<td>3</td>
<td>.088583</td>
<td>.020041</td>
<td>24.2010</td>
<td>24.2471</td>
</tr>
<tr>
<td>4</td>
<td>-.020694</td>
<td>.020197</td>
<td>25.2712</td>
<td>25.3199</td>
</tr>
<tr>
<td>5</td>
<td>-.033640</td>
<td>.020205</td>
<td>28.0993</td>
<td>28.1558</td>
</tr>
<tr>
<td>6</td>
<td>-.013402</td>
<td>.020228</td>
<td>28.5481</td>
<td>28.6061</td>
</tr>
<tr>
<td>7</td>
<td>-.037016</td>
<td>.020231</td>
<td>31.9721</td>
<td>32.0425</td>
</tr>
<tr>
<td>8</td>
<td>.0046310</td>
<td>.020258</td>
<td>32.0257</td>
<td>32.0963</td>
</tr>
<tr>
<td>9</td>
<td>.028661</td>
<td>.020259</td>
<td>34.0785</td>
<td>34.1581</td>
</tr>
<tr>
<td>10</td>
<td>.031858</td>
<td>.020275</td>
<td>36.6148</td>
<td>36.7066</td>
</tr>
<tr>
<td>11</td>
<td>.020313</td>
<td>.020295</td>
<td>37.6459</td>
<td>37.7431</td>
</tr>
<tr>
<td>12</td>
<td>.010584</td>
<td>.020303</td>
<td>37.9258</td>
<td>38.0246</td>
</tr>
<tr>
<td>13</td>
<td>.034909</td>
<td>.020305</td>
<td>40.9711</td>
<td>41.0883</td>
</tr>
<tr>
<td>14</td>
<td>.4962E-3</td>
<td>.020329</td>
<td>40.9717</td>
<td>41.0890</td>
</tr>
<tr>
<td>15</td>
<td>.012593</td>
<td>.020329</td>
<td>41.3680</td>
<td>41.4879</td>
</tr>
</tbody>
</table>
Variable USA Sample from 2 to 2500

<table>
<thead>
<tr>
<th>Order</th>
<th>Autocorrelation</th>
<th>Standard Error</th>
<th>Box-Pierce Statistic</th>
<th>Ljung-Box Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.012327</td>
<td>.020004</td>
<td>.37973 [.538]</td>
<td>.38018 [.538]</td>
</tr>
<tr>
<td>2</td>
<td>-.034282</td>
<td>.020007</td>
<td>3.3168 [.190]</td>
<td>3.3219 [.190]</td>
</tr>
<tr>
<td>3</td>
<td>-.046523</td>
<td>.020031</td>
<td>8.7255 [.033]</td>
<td>8.7415 [.033]</td>
</tr>
<tr>
<td>4</td>
<td>-.0039608</td>
<td>.020074</td>
<td>8.7647 [.067]</td>
<td>8.7808 [.067]</td>
</tr>
<tr>
<td>5</td>
<td>-.027588</td>
<td>.020074</td>
<td>10.6666 [.058]</td>
<td>10.6881 [.058]</td>
</tr>
<tr>
<td>6</td>
<td>-.031322</td>
<td>.020089</td>
<td>13.1184 [.041]</td>
<td>13.1477 [.041]</td>
</tr>
<tr>
<td>7</td>
<td>-.025285</td>
<td>.020109</td>
<td>14.7160 [.040]</td>
<td>14.7511 [.039]</td>
</tr>
<tr>
<td>10</td>
<td>.034734</td>
<td>.020122</td>
<td>17.8587 [.057]</td>
<td>17.9089 [.057]</td>
</tr>
<tr>
<td>11</td>
<td>-.046378</td>
<td>.020146</td>
<td>23.2338 [.016]</td>
<td>23.3121 [.016]</td>
</tr>
<tr>
<td>12</td>
<td>.016744</td>
<td>.020189</td>
<td>23.9345 [.021]</td>
<td>24.0166 [.020]</td>
</tr>
<tr>
<td>13</td>
<td>.059457</td>
<td>.020195</td>
<td>32.7688 [.002]</td>
<td>32.9043 [.002]</td>
</tr>
<tr>
<td>14</td>
<td>.0012805</td>
<td>.020265</td>
<td>32.7729 [.003]</td>
<td>32.9084 [.003]</td>
</tr>
<tr>
<td>15</td>
<td>.019589</td>
<td>.020265</td>
<td>33.7318 [.004]</td>
<td>33.8739 [.004]</td>
</tr>
<tr>
<td>16</td>
<td>.0032432</td>
<td>.020272</td>
<td>33.7581 [.006]</td>
<td>33.9004 [.006]</td>
</tr>
<tr>
<td>17</td>
<td>-.019210</td>
<td>.020272</td>
<td>34.6803 [.007]</td>
<td>34.8296 [.007]</td>
</tr>
<tr>
<td>18</td>
<td>-.017575</td>
<td>.020280</td>
<td>35.4523 [.008]</td>
<td>35.6078 [.008]</td>
</tr>
<tr>
<td>19</td>
<td>-.9247E-3</td>
<td>.020286</td>
<td>35.4544 [.012]</td>
<td>35.6099 [.012]</td>
</tr>
<tr>
<td>20</td>
<td>-.010797</td>
<td>.020286</td>
<td>35.7457 [.016]</td>
<td>35.9038 [.016]</td>
</tr>
<tr>
<td>21</td>
<td>.0048073</td>
<td>.020288</td>
<td>35.8034 [.023]</td>
<td>35.9621 [.022]</td>
</tr>
<tr>
<td>22</td>
<td>-.013859</td>
<td>.020289</td>
<td>36.2834 [.028]</td>
<td>36.4467 [.027]</td>
</tr>
<tr>
<td>23</td>
<td>.027383</td>
<td>.020292</td>
<td>38.1572 [.025]</td>
<td>38.3395 [.023]</td>
</tr>
<tr>
<td>24</td>
<td>-.028293</td>
<td>.020307</td>
<td>40.1577 [.021]</td>
<td>40.3609 [.020]</td>
</tr>
</tbody>
</table>

GARCH (1,1) - M RESULTS

TESTS FOR SAVING THE ERROR CORRECTION VARIABLES (RESIDUALS) WHICH ARE USED FOR TESTING VOLATILITY SPILLOVERS

GARCH(1,1) in mean assuming a t distribution converged after 26 iterations

* Dependent variable is DA
2497 observations used for estimation from 4 to 2500

* Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT -.1537E-3 .3756E-3 .40928 [.682]
DA(-1) -.47027 .018599 -
25.2846[,000] 1.9179 4.4613
.42991[,667]

* R-Squared .21788 R-Bar-Squared
.21662
S.E. of Regression .010204 F-stat. F(4,2492)
173.5526[,000]
Mean of Dependent Variable -.2123E-5 S.D. of Dependent Variable
.011529
Residual Sum of Squares .25949 Equation Log-likelihood
8086.5
Akaike Info. Criterion 8080.5 Schwarz Bayesian Criterion
8063.0
DW-statistic 2.3304

* Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term

* Coefficient Asymptotic Standard Error
Constant .1411E-4 .2385E-5
E-SQ(- 1) .17884 .026890
H-SQ(- 1) .68209 .023136
D.F. of t-Dist. 13.0845 2.7323

GARCH(1,1) in mean assuming a t distribution converged after 23 iterations

* Dependent variable is DG
2497 observations used for estimation from 4 to 2500

* Regressor Coefficient Standard Error T-
Ratio[Prob] CONSTANT -.1234E-3 .3559E-3 -
 .34681[,729] -.49668 .017939 -
DG(-1) .75983 1.7423
27.6875[,000]
H-Squared .43612[,663]
43612[,663]

* R-Squared .21283 R-Bar-Squared
.21157
S.E. of Regression .017103 F-stat. F(4,2492)
168.4442[,000]
Mean of Dependent Variable -.1678E-4 S.D. of Dependent Variable
.019261
Residual Sum of Squares .72893 Equation Log-likelihood
7018.7
Akaike Info. Criterion 7012.7 Schwarz Bayesian Criterion 6995.3
DW-statistic 2.2710

* Parameters of the Conditional Heteroscedastic Model
 Explaining H-SQ, the Conditional Variance of the Error Term

* Coefficient Asymptotic Standard Error
Constant .3568E-5 .3266E-5
E-SQ(- 1) .11705 .019860
H-SQ(- 1) .87508 .016651
D.F. of t-Dist. 18.4378 6.0274

* H-SQ stands for the conditional variance of the error term.
E-SQ stands for the square of the error term.
 GARCH(1,1) in mean assuming a t distribution
 converged after 26 iterations

* Dependent variable is DU
2497 observations used for estimation from 4 to 2500

* Regressor Coefficient Standard Error T- Ratio[Prob]
CONSTANT .1885E-4 .2309E-3 .081602[.935]
DU(-1) -.48483 .018088 -26.8039[.000]
H-Squared -.33051 2.0282 - .16296[.871]

* R-Squared .22628 R-Bar-Squared
.22504
S.E. of Regression .012920 F-stat. F(4,2492) 182.1979[.000]
Mean of Dependent Variable -.1107E-4 S.D. of Dependent Variable
.014676
Residual Sum of Squares .41596 Equation Log-likelihood
7750.7
Akaike Info. Criterion 7744.7 Schwarz Bayesian Criterion
7727.2
DW-statistic 2.2850

* Parameters of the Conditional Heteroscedastic Model
 Explaining H-SQ, the Conditional Variance of the Error Term

* Coefficient Asymptotic Standard Error
Constant .1531E-5 .4828E-5
E-SQ(- 1) .12805 .037552
TESTS FOR MEAN SPILLOVERS

GARCH(1,1) in mean assuming a t distribution converged after 25 iterations

Dependent variable is DU
2497 observations used for estimation from 4 to 2500

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>.6032E-6</td>
<td>.2322E-3</td>
<td></td>
</tr>
<tr>
<td>.0025973</td>
<td>.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU(-1)</td>
<td>-.49243</td>
<td>.018378</td>
<td>-26.7949[.000]</td>
</tr>
<tr>
<td>DA(-1)</td>
<td>-.083503</td>
<td>.018162</td>
<td>-4.5978[.000]</td>
</tr>
<tr>
<td>DG(-1)</td>
<td>-.024707</td>
<td>.012595</td>
<td>-1.9617[.050]</td>
</tr>
<tr>
<td>H-Squared</td>
<td>-.20583</td>
<td>2.0638</td>
<td></td>
</tr>
<tr>
<td>.099735</td>
<td>.921</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Squared .23752 R-Bar-Squared
.23568
S.E. of Regression .012831 F-stat. F(6,2490)
129.2771[.000]
Mean of Dependent Variable -.1107E-4 S.D. of Dependent Variable
.014676
Residual Sum of Squares .40991 Equation Log-likelihood
7766.4
Akaike Info. Criterion 7758.4 Schwarz Bayesian Criterion
7735.1
DW-statistic 2.2646

Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Asymptotic Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.1363E-5</td>
</tr>
<tr>
<td>E-SQ(- 1)</td>
<td>.11917</td>
</tr>
<tr>
<td>H-SQ(- 1)</td>
<td>.87970</td>
</tr>
<tr>
<td>D.F. of t-Dist.</td>
<td>12.2133</td>
</tr>
</tbody>
</table>

H-SQ stands for the conditional variance of the error term.
E-SQ stands for the square of the error term.

GARCH(1,1) in mean assuming a t distribution converged after 40 iterations
Dependent variable is DA
2497 observations used for estimation from 4 to 2500

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>0.1515E-3</td>
<td>0.4217E-3</td>
<td></td>
</tr>
<tr>
<td>DU(-1)</td>
<td>18.5065</td>
<td>0.013553</td>
<td>18.5065[.000]</td>
</tr>
<tr>
<td>DA(-1)</td>
<td>-4.2817</td>
<td>0.017392</td>
<td>-24.6182[.000]</td>
</tr>
<tr>
<td>DG(-1)</td>
<td>6.5245</td>
<td>0.010073</td>
<td>6.5245[.000]</td>
</tr>
</tbody>
</table>

H-Squared = -2.2416, R-Squared = 0.38023, R-Bar-Squared = 0.37874
S.E. of Regression = 0.0090873, F-stat = 254.6063[.000]
Mean of Dependent Variable = -0.2123E-5, S.D. of Dependent Variable = 0.011529
Residual Sum of Squares = 0.20562, Equation Log-likelihood = 8320.5
Akaike Info. Criterion = 8312.5, Schwarz Bayesian Criterion = 8289.2
DW-statistic = 2.4153

Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Asymptotic Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.1546E-4</td>
</tr>
<tr>
<td>E-SQ(-1)</td>
<td>0.16517</td>
</tr>
<tr>
<td>H-SQ(-1)</td>
<td>-0.64330</td>
</tr>
<tr>
<td>D.F. of t-Dist.</td>
<td>13.5278</td>
</tr>
</tbody>
</table>

GARCH(1,1) in mean assuming a t distribution converged after 25 iterations

Dependent variable is DG
2497 observations used for estimation from 4 to 2500

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>-0.3855E-4</td>
<td>0.3183E-3</td>
<td></td>
</tr>
</tbody>
</table>
Parameters of the Conditional Heteroscedastic Model

Explaining H-SQ, the Conditional Variance of the Error Term

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Asymptotic Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.1847E-5</td>
</tr>
<tr>
<td>E-SQ(- 1)</td>
<td>.10035</td>
</tr>
<tr>
<td>H-SQ(- 1)</td>
<td>.89746</td>
</tr>
<tr>
<td>D.F. of t-Dist.</td>
<td>15.8141</td>
</tr>
</tbody>
</table>

TESTS FOR VOLATILITY SPILLOVERS

GARCH(1,1) in mean assuming a t distribution converged after 34 iterations

* \(\text{Dependent variable is DA} \)

2496 observations used for estimation from 5 to 2500

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>-.1414E-3</td>
<td>.4650E-3</td>
<td>.-</td>
</tr>
<tr>
<td>EUS(^{-1})</td>
<td>.27555</td>
<td>.014498</td>
<td></td>
</tr>
</tbody>
</table>

7 Here EUS, EGER and EAUS are the past squared innovations which are used as proxies for past volatility shocks during day \(t-1 \); and are taken as the residuals from running the regression of a variable on its one period lagged variable.
EAUS(-1) -.65148 .018267 -
35.6643[.000]
EGER(-1) .058683 .011121
5.2766[.000]
H-Squared 1.7413 7.5262
.23137[.817]

* R-Squared .46728 R-Bar-Squared .46600
* S.E. of Regression .0084224 F-stat. F(6,2489) 363.8761[.000]
* Mean of Dependent Variable .5256E-5 S.D. of Dependent Variable .011526
* Residual Sum of Squares .17656 Equation Log-likelihood 8487.7
* Akaike Info. Criterion 8479.7 Schwarz Bayesian Criterion 8456.4
* DW-statistic 2.1719

*
Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term

* Coefficient Asymptotic Standard Error
Constant .7223E-5 .2910E-5
E-SQ(- 1) .10540 .024139
H-SQ(- 1) .79071 .022535
D.F. of t-Dist. 12.5577 2.7026

*
GARCH(1,1) in mean model assuming a t distribution converged after 23
iterations

* Dependent variable is DG 2496 observations used for estimation from 5 to 2500

* Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT -.3612E-4 .2110E-3 - .17121[.864]
EUS(-1) .43946 .041914
.4848[.000] .014631 .033136 - .44154[.659]
EGER(-1) -.75323 .023960 - 31.4365[.000]

* R-Squared .37111 R-Bar-Squared .36984
* S.E. of Regression .015291 F-stat. F(5,2490) 293.8656[.000]
Mean of Dependent Variable -.1026E-4 S.D. of Dependent Variable 0.019262
Residual Sum of Squares .58220 Equation Log-likelihood 7312.2
Akaike Info. Criterion 7305.2 Schwarz Bayesian Criterion 7284.8
DW-statistic 2.1818

Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term

Coefficient Asymptotic Standard Error
Constant .1398E-5 .4470E-4
E-SQ(- 1) .091503 .24623
H-SQ(- 1) .90713 .20961
D.F. of t-Dist. 12.2740 16.0772

SINCE WE EXPERIENCED PROBLEMS IN RUNNING THE EQUATION FOR USA ON OTHER VARIABLES TESTS WHERE RUN INDEPENDENTLY TO SHOW THE RESULTS

GARCH(1,1) in mean assuming a t distribution converged after 25 iterations

Dependent variable is EDU
2494 observations used for estimation from 7 to 2500

Regressor Coefficient Standard Error T-Ratio[Prob]
CONSTANT -.4157E-4 .2317E-3 - .17942 [.858]
EDU(-1) -.13966 .020321 - 6.8730 [.000]
H-Squared .46440 2.0570

R-Squared .020786 R-Bar-Squared .019213
S.E. of Regression .012791 F-stat. F(4,2489) 13.2088 [.000]
Mean of Dependent Variable .3185E-4 S.D. of Dependent Variable .012916
Residual Sum of Squares .40724 Equation Log-likelihood 7763.3
Akaike Info. Criterion 7757.3 Schwarz Bayesian Criterion 7739.8
DW-statistic 2.1100

Parameters of the Conditional Heteroscedastic Model
Explaining H-SQ, the Conditional Variance of the Error Term
Coefficient Asymptotic Standard Error

Constant .1440E-5 .5381E-5
E-SQ(- 1) .12356 .040562
H-SQ(- 1) .87525 .033120
D.F. of t-Dist. 12.1379 3.0142

H-SQ stands for the conditional variance of the error term.
E-SQ stands for the square of the error term.

GARCH(1,1) in mean assuming a t distribution converged after 25 iterations

Dependent variable is EDU
2494 observations used for estimation from 7 to 2500

Coefficient Asymptotic Standard Error

Constant .1358E-5 .7478E-5
E-SQ(- 1) .11751 .043298
H-SQ(- 1) .88125 .034546
D.F. of t-Dist. 11.6186 3.0147

H-SQ stands for the conditional variance of the error term.
E-SQ stands for the square of the error term.
GARCH(1,1) in mean assuming a t distribution converged after 24 iterations

Dependent variable is EDU
2494 observations used for estimation from 7 to 2500

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>-.3230E-4</td>
<td>.2317E-3</td>
<td>-</td>
</tr>
<tr>
<td>.13939[.889]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDG(-1)</td>
<td>-.088727</td>
<td>.014172</td>
<td>-</td>
</tr>
<tr>
<td>6.2608[.000]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Squared</td>
<td>.36569</td>
<td>2.0524</td>
<td></td>
</tr>
<tr>
<td>.17817[.859]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Squared .015995 R-Bar-Squared .014414
S.E. of Regression .012823 F-stat. F(4,2489) 10.1146[.000]
Mean of Dependent Variable .3185E-4 S.D. of Dependent Variable .012916
Residual Sum of Squares .40924 Equation Log-likelihood 7759.7
Akaike Info. Criterion 7753.7 Schwarz Bayesian Criterion 7736.2
DW-statistic 2.2490

Parameters of the Conditional Heteroscedastic Model Explaining H-SQ, the Conditional Variance of the Error Term

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Asymptotic Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.1400E-5</td>
</tr>
<tr>
<td>E-SQ(- 1)</td>
<td>.12183</td>
</tr>
<tr>
<td>H-SQ(- 1)</td>
<td>.87699</td>
</tr>
<tr>
<td>D.F. of t-Dist.</td>
<td>12.8171</td>
</tr>
</tbody>
</table>

H-SQ stands for the conditional variance of the error term.
E-SQ stands for the square of the error term.