Long-term persistence of the large mammal lowland tapir is at risk in the largest Atlantic forest corridor

Supplementary File S1 - Material and Methods
Ethic statements 
The collection of the samples had authorization from IBAMA SISBIO - 13418-2 and IF-COTEC - 42.654 / 2007. Accessing to genetic material was carried out under SISGEN - A9F8717 authorization.
PCRs and genotyping 
PCRs were standardized and established using the fluorescence labeling method proposed by Schuelke (2000). PCR reactions were performed in a final volume of 15 µl, containing 0.2 mM dNTPs, buffer tris-KCl 1x (Tris–HCl 20 mM pH 8.4 and KCl 50 mM), 8 pmol reverse primer, 8 pmol FAM and HEX fluorescence primers, 2 pmol forward primer, 3 mM MgCl2 and 1 U Taq DNA Polymerase (Invitrogen). The thermocycler (Veriti, Applied BioSystems) program used consisted of an initial denaturation of 95 ºC for 5 min, followed by 35 cycles of 94 ºC (30 s), 50 ºC – 56 ºC (1 min), 72º C (45 s), and 15 cycles of 94 ºC (30 s), 53 °C (45 s), 72 °C (45 s), with a final extension of 72 °C for 10 min. A positive control with a good quality DNA sample (extracted from lowland tapir blood) and a negative control for contamination (PCR with no DNA included) were used in every amplification reaction.

Considering the often-low DNA quality from non-invasive samples (Broquet et al., 2006), three to four independent locus-PCR replicates were performed for each fecal sample to prevent genotype misleading. Only genotypes observed in at least three of these independent PCR replicates for each sample were scored (Taberlet et al., 1996). The PCR products were genotyped in ABI 3730 DNA Analyzer automated sequencer (Applied Biosystems) and the produced electropherograms were analyzed using GeneMarker 1.85 (Holland and Parson, 2011). 
Geneland analysis
In the Geneland R package (Guilot et al., 2005), using the admixture model method, we first perform an independent run with 1,000,000 iterations of MCMC, 1,000 thinning, and varying K from 1 to 5. For the most probable K, we performed ten independent runs with 2,000,000 iterations of MCMC,1,000 thinning, and the best run was chosen. From the posterior distribution, we drew a map for visualizing the individual probability of population membership.

sPCA analysis 
It was performed in the adegenet R package (Jombart, 2008) with a distance-based connection network for sampling aggregate patterns. We tested for significant global and local structure using a MCMC randomization test with 999 permutations (Jombart, 2008).
Structure analysis
 
We tested the probability of individuals belonging to one to six different populations (1<K<6) using ten independent replicates for each K, burn-in 100,000 steps and 1,000,000 interactions for MCMC. We used K ranging from 1 to 6, because for K determination based on the highest value of ΔK, following Evanno et al. (2005), it is necessary to use the maximum number expected for K (K=5, in our case) plus 1. The most likely K definition followed Evanno et al. (2005) using Structure Harvester (Earl and vonHoldt, 2012). The graphic of the clusters for the best K value was obtained using the CLUMPAK tool (Kopelman et al., 2015), which groups independent runs to estimate a unique membership value for each individual in each cluster. 
Landscape genetics – Resistance GA analysis
Based on the genetic algorithm and model selection approach using MLPE models, ResistanceGA (Peterman, 2018) optimizes resistance surface using genetic distance data. To verify the convergence in the analyses, we run ResistanceGA ten times. We calculated pairwise genetic distances between individuals using principal components analysis (PCA), following Shirk et al. (2010). The genetic distance based on PCA is more sensitive to detect genetic dissimilarities since the alleles that capture the greatest proportions of genetic variation within a population have a more significant contribution to the genetic distances than common alleles (Shirk et al., 2010; 2017), therefore its use can maximize the model selection accuracy and it is important to better inform conservation strategies based on landscape genetics analysis (Shirk et al., 2017). To calculate the pairwise genetic distances between individuals using principal components analysis (PCA), we followed Shirk et al. (2010) and Castillo et al (2014). First, we constructed a matrix where columns represented the alleles from each locus and the rows represented individuals. Then, for each cell was given a value of 0, 1 or 2, based on the number of occurrences of that allele in each individual. For locus with missing data, we assigned the modal value for each allele (Sartor, 2020). Using the Euclidean distance function from the Ecodist R package (Goslee and Urban, 2007), we generated the genetic distance matrix (Table S7) based on the distances between individuals along the first 34 axes of the PCA (90% of explicability). In the case of categorical raster, such as land use maps, this analysis returns values of resistance for each landscape feature. These resistance values are used to interpret which landscape features of land use maps, for example, most hidden the gene flow. Then, we used an isolation by resistance approach to evaluate which landscape features (elevation, land use) and geographic distance most explaining the genetic distance among individuals of tapirs. We built three resistance surfaces: land use, elevation, and geographic distance. For the elevation resistance surface, we used the raw values of elevation, assuming a linear relationship among elevation and resistance values. To test the effect of geographic distance, we built a raster in which all pixels have the value 1 and each pixel has a resolution of 1km. This approach is similar to estimating geographic distance between samples using the geodetic method from geodist R package (r = 0.97). We use the geographic distance resistance surface rather than the geographic distance itself to ensure that all predictive variables have been estimated with the same criteria (i.e., raster resolution). All resistance surfaces have the same raster extension and resolution of 1 km². Land use map was downloaded from MapBiomas (https://mapbiomas.org/en, Projeto MapBiomas, 2020). We used MapBiomas data from 2010, because this was the year in which samples were collected. Elevation map was obtained from UGCS sources (https://www.ugcs.com/). Changes of raster extension and resolution were made with raster R packages.
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